Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a proposal of a model error mitigation technique based on the error distribution analysis of the original model and creatng the additional model that tempers the error impact in particular domain areas identified as the most sensitive. both models are then combined into single ensemble model. The idea is demonstrated on the trivial two-dimensional linear regression model.
Rocznik
Tom
Strony
40--43
Opis fizyczny
Bibliogr. 4 poz., rys.
Twórcy
autor
- Findwise Sp. z o.o., 00-023 Warsaw, Poland, www: Findwise
autor
- AGH University of Science and Technology, 30-059 Cracow, Poland, Faculty of Physics and Applied Computer Science
autor
- AGH University of Science and Technology, 30-059 Cracow, Poland, Faculty of Physics and Applied Computer Science
Bibliografia
- [1] H. Fanaee-T and J. Gama, “Event labeling combining ensemble detectors and background knowledge”,Progress in Artificial Intelligence, 2013, 1–15, 10.1007/s13748-013-0040-3.
- [2] A. Janusz, T. Tajmajer, and M. Świechowski, “Helping AI to Play Hearthstone: AAIA’17 Data Mining Challenge”. In: M. Ganzha, L. Maciaszek, and M. Paprzycki, eds., Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, vol. 11, 2017, 121–125,10.15439/2017F573.
- [3] Q. H. Vu, D. Ruta, and L. Cen, “An ensemble model with hierarchical decomposition and aggregation for highly scalable and robust classification”. In: M. Ganzha, L. Maciaszek, and M. Paprzycki, eds., Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, vol. 11,2017, 149–152, 10.15439/2017F564.
- [4] X.-S. Yang. “Flower Pollination Algorithm for Global Optimization”. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 7445 LNCS, 240–249. 2012.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3efd8376-bdb5-4ef5-997f-a2458865c438