PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compost produced with addition of sewage sludge as a source of Fe and Mn for plant

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Direct application of sewage sludge to soil is controversial due to, among others, its highly variable composition, odour, and risks for health. The obtained composts with the addition of sewage sludge were tested for the contents and availability of manganese and iron. Once composts were applied to the soil, their effect on the content and availability of Mn and Fe in soil and bioaccumulation in the plant were determined. The addition of sewage sludge enriched composts with manganese and iron, but did not increase the content of water-extracted forms of Mn and Fe. The compost with addition of biochar had more organic matter-bound forms of Mn and Fe. Composts amended with sewage sludge had lower effect on the amount of Poa pratensis L. biomass than maize straw compost. The content of Mn and Fe in Poa pratensis L. was in the range permissible for biomass used as fodder. Smaller addition of all composts to the soil significantly increased the content of mobile manganese forms; however, neither the type nor the dose had effect on the content of iron mobile forms. There was no significant differences in the content of organic matter-bound forms of Mn and Fe in soil after the application of composts.
Słowa kluczowe
Rocznik
Strony
259--275
Opis fizyczny
Bibliogr. 52 poz., tab., wykr.
Twórcy
  • Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. A. Mickiewicza 21, 31-120 Kraków, Poland, phone +48 12 662 43 46, fax +48 12 662 43 41
  • Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. A. Mickiewicza 21, 31-120 Kraków, Poland, phone +48 12 662 43 46, fax +48 12 662 43 41
  • Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. A. Mickiewicza 21, 31-120 Kraków, Poland, phone +48 12 662 43 46, fax +48 12 662 43 41
  • Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. A. Mickiewicza 21, 31-120 Kraków, Poland, phone +48 12 662 43 46, fax +48 12 662 43 41
Bibliografia
  • [1] Latośińska J, Kowalik R, Gawdzik J. Risk assessment of soil contamination with heavy metals from municipal sewage sludge. Appl Sci. 2021;11:548. DOI: 10.3390/app11020548.
  • [2] Environmental, economic and social impacts of the use of sewage sludge on land. Final Report, part I: Overview Report prepared by Milieu Ltd, WRcand RPA for the European Commission; 2008. Available from: https://ec.europa.eu/environment/archives/waste/sludge/pdf/part_i_report.pdf.
  • [3] Błaszczyk K, Krzyśko-Łupicka T. Microbiological and physico-chemical composition of sewage sludge derived from the food industry. Chem Didact Ecol Metrol. 2013;18(1-2):89-95. DOI: 10.2478/cdem-2013-0021.
  • [4] Ding A, Zhang R, Ngo HH, He X, Ma J, Nan J, et al. Life cycle assessment of sewage sludge treatment and disposal based on nutrient and energy recovery: A review. Sci Tot Environ. 2021;15:14451. DOI: 10.1016/j.scitotenv.2020.144451.
  • [5] Miller U, Grzelka A, Romanik E, Kuriata M. Analysis of the application of selected physico-chemical methods in eliminating odor nuisance of municipal facilities. E3S Web of Conferences 28, 01023, Air Protection in Theory and Practice. 2018. DOI: 10.1051/e3sconf/20182801023.
  • [6] Werle S. Nitrogen oxides emission reduction using sewage sludge gasification gas Reburning process. Ecol Chem Eng S. 2015;22(1):83-94. DOI: 10.1515/eces-2015-0005.
  • [7] Golbaz S, Zamanzadeh MZ, Pasalari H, Farzadkia M. Assessment of co-composting of sewage sludge, woodchips, and sawdust: feedstock quality and design and compilation of computational model. Environ Sci Pollut Res Int. 2021;28:12414-27. DOI: 10.1007/s11356-020-11237-6.
  • [8] Bernal MP, Alburquerque JA, Moral R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour Technol. 2009;100(22):5444-53. DOI: 10.1016/j.biortech.2008.11.027.
  • [9] Amon B, Kryvoruchko V, Amon T, Zechmeister-Boltenstern S. Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agric Ecosyst Environ. 2006;112(2-3):153-62. DOI: 10.1016/j.agee.2005.08.030.
  • [10] Godlewska P, Schmidt HP, Ok YS, Oleszczuk P. Biochar for composting improvement and contaminants reduction. A review. Bioresour Technol. 2017;246:193-202. DOI: 10.1016/j.biortech.2017.07.095.
  • [11] Czekała W, Malińska K, Cáceres R, Janczak D, Dach J, Lewicki A. Co-composting of poultry manure mixtures amended with biochar-The effect of biochar on temperature and C-CO2 emission. Bioresour Technol. 2016;200:921-27. DOI: 10.1016/j.biortech.2015.11.019.
  • [12] Kopeć M, Gondek K, Mierzwa-Hersztek M, Zaleski T. Effect of the composting process on physical and energetic changes in compost. Acta Agroph. 2015;23(4):607-19. Available from: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.agro-15a994a0-dca4-429e-87cf-b4845a3a0619.
  • [13] Kopeć M, Baran A, Mierzwa-Hersztek M, Gondek K. Chmiel MJ. Effect of the addition of biochar and coffee grounds on the biological properties and ecotoxicity of compost. Waste Biom Val. 2018;9:1389-98. DOI: 10.1007/s12649-017-9916-y.
  • [14] He MM, Tian GM, Liang XQ. Phytotoxicity and speciation of copper, zinc and lead during the aerobic composting of sewage sludge. J Hazard Mater. 2009;163(2):671-7. DOI: 10.1016/j.jhazmat.2008.07.013.
  • [15] Martinho J, Campos B, Brás I, Silva E. The role of compost properties in sorption of heavy metals. Environ Prot Eng. 2015;41:57-65. DOI: 10.5277/epe150205.
  • [16] Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, et al. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere. 2014;99:19-33. DOI: 10.1016/j.chemosphere.2013.10.071.
  • [17] Papageorgiou A, Azzi ES, Enell A, Sundberg C. Biochar produced from wood waste for soil remediation in Sweden: Carbon sequestration and other environmental impacts. Sci Tot Environ. 2021;776:145953. DOI: 10.1016/j.scitotenv.2021.145953.
  • [18] Jansen B, Nierop KGJ, Verstraten JM. Mechanisms controlling the mobility of dissolved organic matter, aluminium and iron in podzol B horizons. Europ J Soil Sci. 2005;56(4):537-50. DOI: 10.1111/j.1365-2389.2004.00686.x.
  • [19] Xue N, Seip HM, Guo J, Liao B, Zeng Q. Distribution of Al, Fe, Mn pools and their correlation in soils from two acid deposition small catchments in Hunan, China. Chemosphere. 2006; 65(11):2468-76. DOI: 10.1016/j.chemosphere.2006.04.045.
  • [20] Gruba P. The solubility of iron in forest soil. Electr J Pol Agric Univ. 2010;13(4). Available from: http://www.ejpau.media.pl/volume13/issue4/art-23.html.
  • [21] European Biochar Certificate - EBC, 2012. Guidelines for a Sustainable Production of Biochar. Version 6.1 of 19th June 2015. European Biochar Foundation (EBC), Arbaz, Switzerland. DOI: 10.13140/RG.2.1.4658.7043. Available from: http://www.europeanbiochar.org/en/download.
  • [22] Meier S, Curaqueo G, Khan N, Bolan N, Rilling J, Vidal C, et al. Effect of biochar on copper immobilization and soil microbial communities in a metal-contaminated soil. J Soil Sedim. 2017;17(5):1237-50. DOI: 10.1007/s11368-015-1224-1.
  • [23] Jindo K, Suto K, Matsumoto K, Garcia C, Sonoki T, Sanchez-Monedero MA. Chemical and biochemical chracterisation of biochar-blended composts prepared from poultry manure. Bioresour Technol. 2012;110:396-404. DOI: 10.1016/j.biortech.2012.01.120
  • [24] Agrafioti E, Bouras G, Kalderis D, Diamadopulos E. Biochar production by sewage sludge pyrolysis. J Anal Appl Pyrol. 2013;101:72-8. DOI: 10.1016/j.jaap.2013.02.010.
  • [25] Elementar Analysensysteme GmbH. Operating instructions vario MAX cube. 2013; 407. www.elementar.com/en/products/organic-elemental-analyzers/vario-max-cube.
  • [26] Zeien H, Brümmer GW. Chemische extraction zur bestimung vin schwermetallbindungsformen in böden. Mitteilg. Dtsch. Bodenkundl. Gesellsch. 1989;59:505-10.
  • [27] Oleszczuk N, Castro JT, da Silva MM, Korn Md, Welz B, Vale MG. Method development for the determination of manganese, cobalt and copper in green coffee comparing direct solid sampling electrothermal atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry. Talanta. 2007;73(5):862-9. DOI: 10.1016/j.talanta.2007.05.005.
  • [28] Barret EP, Joyner LG, Halenda PH. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Amer Chem Soc. 1951;73(1):373-80. DOI: 10.1021/ja01145a126.
  • [29] Park JH, Choppala GK, Bolan NS, Chung JW, Chusavathi T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil. 2011;348:439-51. DOI: 10.1007/s11104-011-0948-y.
  • [30] Monzó J, Paya J, Borrachero MV, Córcoles A. Use of sewage sludge ash (SSA)-cement admixtures in mortars. Cem Conc Res. 1996;26(9):1389-98. DOI: 10.1016/0008-8846(96)00119-6.
  • [31] Singh J, Kalamdhad AS. Bioavailability and leachability of heavy metals during water hyacinth composting. Chem Spec Bioavailab. 2013;25(1):1-14. DOI: 10.3184/095422913X13584520294651.
  • [32] Liu HT, Gao D, Chen TB, Cai H, Zheng GD. Improvement of salinity in sewage sludge compost prior to its utilization as nursery substrate. J Air Waste Manage Assoc. 2014;64(5):546-51. DOI: 10.1080/10962247.2013.872710.
  • [33] Tennant MF, Mazyck DW. The role of surface acidity and pore size distribution in the adsorption of 2-methylisoborneol via powdered activated carbon. Carbon. 2007;45:858-64. DOI: 10.1016/j.carbon.2006.11.009.
  • [34] Hua L, Wu W, Liu Y, McBride MB, Chen Y. Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. Environ Sci Pollut Res. 2009;16(1):1-9. DOI: 10.1007/s11356-008-0041-0.
  • [35] Hiller DA, Brümmer GW. Electron microprobe studies on soil samples with varying heavy metal contamination: Part 2. Contents of heavy metals and other elements in aggregations of humic substances, litter residues, and charcoal particles. Z Pflanzenernähr Bodenkd. 1997;160:47-55. DOI: 10.1002/jpln.19951580204.
  • [36] Vandecasteele B, Sinicco T, D'Hose T, Nest TV, Mondini C. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake. J Environ Manage. 2016;168:200-9. DOI: 10.1016/j.jenvman.2015.11.045.
  • [37] Gaskin JW, Speir RA, Harris K, Das KC, Lee RD, Morris LA, et al. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron J. 2010;102:623-33. DOI: 10.2134/agronj2009.0083.
  • [38] Major J, Rondon M, Molina D, Riha SJ, Lehmann J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil. 2010;333:117-28. DOI: 10.1007/s11104-010-0327-0.
  • [39] Schmidt HP, Kammann C, Niggli C, Evangelou MWH, Mackie KA, Abiven S. Biochar and biochar-compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health and grape quality. Agricult Ecosyst Environ. 2014;191:117-23. DOI: 10.1016/j.agee.2014.04.001.
  • [40] Saha S, Pondey AK, Gopinath KA, Bhattacharaya R, Kundu S, Gupta HS. Nutritional quality of organic rice grown on organic composts. Agron Sustain Dev. 2007;27(3):223-9. DOI: 10.1051/agro:2007002.
  • [41] Hashemimajd K, Mohamadi Farani T, Jamaati-e-Somarin S. Effect of elemental sulphur and compost on pH, electric al conductivity and phosphorus availability of one clay soil. Afr J Biotechnol. 2012;11(6):1425-32. DOI: 10.5897/AJB11.2800.
  • [42] Demir K, Sahin O, Kadioglu YK, Pilbeam DJ, Gunes A. Essential and non-essential element composition of tomato plants fertilized with poultry manure. Sci Hort. 2010;127(1):16-22. DOI: 10.1016/j.scienta.2010.08.009.
  • [43] Hernández A, Castillo H, Ojeda D, Arras A, López J, Sánchez E. Effect of vermicompost and compost on lettuce production. Chil J Agric Res. 2010;70(4):583-9. Available from: https://www.semanticscholar.org/paper/Effect-of-Vermicompost-and-Compost-on-Lettuce-Hern%C3%A1ndez-Castillo/33ca48adf783f53e0ad5497eea187514b31a265e.
  • [44] Castillo C, Rubio R, Contreras A, Borie F. Hongos micorrizógenos arbusculares en un Ultisol de la IX Región fertilizado orgánicamente (Effect of compost addition on arbuscular mycorrhizal propagules in a southern Chilean volcanic soil). Rev Cienc Suelo Nutr. 2004;4(2):39-47. Available from: https://scielo.conicyt.cl/pdf/rcsuelo/v6n3/art03.pdf.
  • [45] Buttler TJ, Muir PM. Dairy manure compost improves soil and increase tall wheatgrass yield. Agron J. 2006;98:1090-6. DOI: 10.2134/agronj2005.0348.
  • [46] Leifeld J, Siebert S, Kögel-Knabner I. Changes in the chemical composition of soil organic matter after application of compost. Eur J Soil Sci. 2002;53:299-309. DOI: 10.1046/j.1351-0754.2002.00453.x.
  • [47] Carmo DL, de Lima LB, Silva CA. Soil fertility and electrical conductivity affected by organic waste rates and nutrient inputs. Rev Bras Cienc Solo. 2016;40:1-17. DOI: 10.1590/18069657rbcs20150152.
  • [48] Bouajila K, Sanaa M. Effect of organic amendments on soil physic-chemical and biological properties. J Mater Environ Sci. 2011;2:485-90. Available from: https://www.jmaterenvironsci.com/Document/vol2/vol2_S1/12-GSO-S1-01-Bouajila%20kkedija.pdf.
  • [49] Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M. Mobility and bioavailability of heavy metals and metalloids in soil environments. J Soil Sci Plant Nutr. 2010;10(3):268-92. DOI: 10.4067/S0718-95162010000100005.
  • [50] Gondek K. Contents of manganese in maize and soil fertilized with organic materials. Ecol Chem Eng A. 2008;15(10):1057-66.
  • [51] Hsu J-H, Lo S-L. Characterization and extractability of copper, manganese, and zinc in swine manure compost. J Environ Qual. 2000;29(2):447-53. DOI: 10.2134/jeq2000.00472425002900020012x.
  • [52] Maqueda C, Herencja JF, Ruiz JC, Hidalgo MF. Organic and inorganic fertilization effects on DTPA-extractable Fe, Cu, Mn and Zn, and their concentration in the edible portion of crops. J Agric Sci. 2011;149(4):461-72. DOI: 10.1017/S0021859610001085.
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
2. The research was financed by the Ministry of Science and Higher Education of the Republic of Poland.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3efb2d7d-0cf6-4599-82c1-ff995f8322d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.