PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zarządzanie temperaturą w bateriach samochodów elektrycznych – przegląd systemów chłodzenia

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Temperature management in electric car batteries – review of cooling systems
Języki publikacji
PL
Abstrakty
PL
Polska jest jednym z największych rynków samochodów osobowych w Europie pod względem sprzedaży, zajmując szóste miejsce wśród krajów Unii Europejskiej i Europejskiego Stowarzyszenia Wolnego Handlu. Chociaż we flocie samochodów osobowych w Polsce dominują obecnie samochody z silnikami spalinowymi, kraj jest zaangażowany w zwiększanie liczby i udziału elektrycznych samochodów osobowych. Prawie 12 300 elektrycznych samochodów osobowych jeździło po polskich drogach do czerwca 2020 r. Ponad 56% z nich stanowiły pojazdy elektryczne na baterie (BEV). W niniejszym artykule zebrano informacje dotyczące stosowanych w samochodach elektrycznych systemów zarządzania temperaturą baterii. Przedstawiono sposoby chłodzenia z wykorzystaniem powietrza, czynnika chłodniczego, różnego rodzaju cieczy, materiałów o przemianie fazowej oraz systemu opartego na rurkach cieplnych, a także z zastosowaniem elementu termoelektrycznego. W czasie eksploatacji pojazdów BEV należy zwrócić szczególną uwagę na systemy zarządzania temperaturą baterii. Temperatura baterii wywiera różnorodny wpływ na działanie układu elektrochemicznego, co przekłada się na moc i efektywność energetyczną, bezpieczeństwo i niezawodność oraz koszt i okres użytkowania. W celu zapewnienia długiej żywotności i optymalnej wydajności baterii litowo-jonowych, należy zadbać o optymalny zakres temperatur oraz jednolity rozkład temperatury w pakiecie baterii i ogniwach.
EN
Poland is one of the largest passenger car markets in Europe in terms of sales, ranking sixth place among the countries of the European Union and the European Free Trade Association. Although the passenger car fleet in Poland is currently dominated by cars with internal combustion engines, the country is committed to increasing the number and share of electric passenger cars. Almost 12 300 electric passenger cars were on Polish roads until June 2020. Over 56% of them were battery electric vehicles (BEV). This article gathers information on the temperature management systems used in electric cars. Cooling methods with the use of air, refrigerant, various types of liquids, materials with phase change and a system based on heat pipes as well as the use of a thermoelectric element were presented. When operating BEVs, particular attention should be paid to battery temperature management systems. Battery temperature has a variety of effects on the operation of the electrochemical system, which translates into power and energy efficiency, safety and reliability, cost and lifetime. In order to ensure the long life and optimal performance of lithium-ion batteries, care should be taken to ensure the optimal temperature range and uniform temperature distribution in the battery pack and cells.
Czasopismo
Rocznik
Strony
240--247
Opis fizyczny
Bibliogr. 42 poz., tab.
Twórcy
  • Instytut Nafty i Gazu – Państwowy Instytut Badawczy
  • Instytut Nafty i Gazu – Państwowy Instytut Badawczy
  • Instytut Nafty i Gazu – Państwowy Instytut Badawczy
Bibliografia
  • Adair D., Ismailov K., Bakenov Z., 2014. Thermal Management of Lithium-ion Battery Packs. COMSON Conference 2014.
  • An Z., Shah K., Jia L., Ma Y., 2019. A parametric study for optimization of minichannel based battery thermal management system. Applied Thermal Engineering, 154: 593–601. DOI: 10.1016/j.applthermaleng.2019.02.088.
  • Benabdelaziz K., Lebrouhi B., Maftah A., Maaroufi M., 2020. Novel external cooling solution for electric vehicle battery pack. Energy Reports, 6: 262–272. DOI: 10.1016/j.egyr.2019.10.043.
  • Cao W.J., Zhao C.R., Wang Y.W., Dong T., Jiang F.M., 2019. Thermal modeling of full-size-scale cylindrical battery pack cooled by channeled liquid flow. International Journal of Heat and Mass Transfer, 138: 1178–1187. DOI: 10.1016/j.ijheatmasstransfer.2019.04.137.
  • Chung Y., Kim M.S., 2019. Thermal analysis and pack level design of battery thermal management system with liquid cooling for electric vehicles. Energy Conversion and Management, 196(51): 105–116. DOI: 10.1016/j.enconman.2019.05.083.
  • Du X., Qian Z., Chen Z., Rao Z., 2018. Experimental investigation on cooling mini-channel–based thermal management for Li-ion battery module under different cooling schemes. International Journal of Energy Research, 42(15): 2781–2788. DOI: 10.1002/er.4067.
  • Ekbote A., Karvinkoppa M., Bhojwani V., Patil N., 2020. Comprehensive study on smart cooling techniques used for batteries. 6th International Conference on Energy and City of the Future (EVF’2019), 170: 01028. DOI: 10.1051/e3sconf/202017001028.
  • Forrister T., 2019. Analyzing the Liquid Cooling of a Li-Ion Battery Pack. <https://www.comsol.com/blogs/analyzing-the-liquid--cooling-of-a-li-ion-battery-pack> (dostęp: 19.01.2019).
  • Hémery Ch.-V., Pra F., Robin J.F., Marty P., 2014. Experimental performances of a battery thermal management system using a phase change material. Journal of Power Sources, 270: 349–358. DOI: 10.1016/j.jpowsour.2014.07.147.
  • Huo Y., Rao Z., Liu X., Zhao J., 2015. Investigation of power battery thermal management by using mini-channel cold plate. Energy Conversion and Management, 89, 387–395.
  • Jarrett A., Kim I.Y., 2011. Design optimization of electric vehicle battery cooling plates for thermal performance. Journal of Power Sources, 196(23): 10359–10368. DOI: 10.1016/j.jpowsour.2011.06.090.
  • Jarrett A., Kim I.Y., 2014. Influence of operating conditions on the optimum design of electric vehicle battery cooling plates. Journal of Power Sources, 245: 644–655. DOI: 10.1016/j.jpowsour.2013.06.114.
  • Jin L.W., Lee P.S., Kong X.X., Fan Y., Chou S.K., 2014. Ultra-thin minichannel LCP for EV battery thermal management. Applied Energy,113(C): 1786–1794. DOI: 10.1016/j.apenergy.2013.07.013.
  • Kalaf O., Solyali D., Asmael M., Zeeshan Q., Safaei B., Askir A., 2020. Experimental and simulation study of liquid coolant battery thermal management system for electric vehicles: A review. International Journal of Energy Research, 45(5): 6495–6517. DOI: 10.1002/er.6268.
  • Li K., Yan J., Chen H., Wang Q., 2018. Water cooling based strategy for lithium ion battery pack dynamic cycling for thermal management system. Applied Thermal Engineering, 132: 575–585. DOI: 10.1016/j.applthermaleng.2017.12.131.
  • Li W., Peng X., Xiao M., Garg A., Gao L., 2019a. Multi-objective design optimization for mini-channel cooling battery thermal management system in an electric vehicle. International Journal of Energy Research, 43(8): 3668–3680.
  • Li W., Zhuang X., Xu X., 2019b. Numerical study of a novel battery thermal management system for a prismatic Li-ion battery module. Energia Procedia, 158: 4441–4446. DOI: 10.1016/j.egypro.2019.01.771.
  • Lu M., Zhang X., Ji J., Xu X., Zhang Y., 2020. Research progress on power battery cooling technology for electric vehicles. Journal of Energy Storage, 27: 101155. DOI: 10.1016/j.est.2019.101155.
  • Malik M., Dincer I., Rosen M.A., Mathew M., Fowler M., 2019. Thermal and electrical performance evaluations of series connected Li-ion batteries in a pack with liquid cooling. Applied Thermal Engineering, 129: 472–481. DOI: 10.1016/j.applthermaleng.2017.10.029.
  • Panchal S., Khasow R., Dincer I., Agelin-Chaab M., Fraser R., Fowler M., 2017. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery. Applied Thermal Engineering, 122: 80–90. DOI: 10.1016/j.applthermaleng. 2017.05.010.
  • Qian Z., Li Y., Rao Z., 2016. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Conversion and Management, 126(C): 622–631. DOI: 10.1016/j.enconman.2016.08.063.
  • Rao Z., Wang S., 2011. A review of power battery thermal energy management. Renewable and Sustainable Energy Reviews, 15(9):4554–4571. DOI: 10.1016/j.rser.2011.07.096.
  • Rao Z.H., Qian Z., Kuang Y., Li Y.M., 2017. Thermal performance of liquid cooling based thermal management system for cylindrical lithiumion battery module with variable contact surface. Applied Thermal Engineering, 123: 1514–1522. DOI: 10.1016/j.applthermaleng. 2017.06.059.
  • Reay D.A., Kew P.A., McGlen R.J., 2014. Heat Pipes – Theory, Design and Applications. Elsevier. DOI: 10.1016/C2011-0-08979-2.
  • Saw L.H., Taya A.A.O., Zhang L.W., 2015. Thermal Management of Lithium-ion Battery Pack with Liquid Cooling. 31-st Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). DOI: 10.1109/SEMI-THERM.2015.7100176.
  • Sendek-Matysiak E., 2019. Ocena baterii litowo-jonowych stosowanych w samochodach elektrycznych typu BEV pod względem bezpieczeństwa i wpływu na środowisko. Problemy Transportu i Logistyki, 2(46): 59–68. DOI: 10.18276/ptl.2019.46-06.
  • Shang Z.Z., Qi H.Z., Liu X.T., Ouyang C.Z., Wang Y.S, 2019. Structural optimization of lithium-ion battery for improving thermal performance based on a liquid cooling system. International Journal of Heat and Mass Transfer, 130: 33–41. DOI: 10.1016/j.ijheatmasstransfer. 2018.10.074.
  • Sheng L., Su L., Zhang H., Li K., Fang Y., Ye W., Fang Y., 2019. Numerical investigation on a lithium ion battery thermal management utilizing a serpentine-channel liquid cooling plate exchanger. International Journal of Heat and Mass Transfer, 141(1): 658–668. DOI: 10.1016/j.ijheatmasstransfer.2019.07.033.
  • Siruvuri S.V., Budarapu P.R., 2020. Studies on thermal management of Lithium-ion battery pack using water as the cooling fluid. The Journal of Energy Storage, 29: 101377. DOI: 10.1016/j.est.2020.101377.
  • Smith J., Singh R., Hinterberger M., Mochizuki M., 2018. Battery thermal management system for electric vehicle using heat pipes. International Journal of Thermal Sciences, 134: 517–529. DOI: 10.1016/j.ijthermalsci.2018.08.022.
  • Tang Z., Min X., Song A., Cheng J., 2018. Thermal management of a cylindrical lithium-ion battery module using a multichannel wavy tube. Journal of Energy Engineering, 145(1): 1–9. DOI: 10.1061/(ASCE)EY.1943-7897.0000592.
  • Wang C., Zhang G., Li X., Huang J., Wang Z., Lv Y., Meng L., Situ W., Rao M., 2018. Experimental examination of large capacity LiFePO4 battery pack at high temperature and rapid discharge using novel liquid cooling strategy. International Journal of Energy Research, 42: 1172–1182. DOI: 10.1002/er.3916.
  • Wang H., Tao T., Xu J., Mei X., Liu X., Piao G., 2020. Cooling capacity of a novel modular liquid-cooled battery thermal management system for cylindrical lithium ion batteries. Applied Thermal Engineering, 178(2): 115591. DOI: 10.1016/j.applthermaleng.2020.115591.
  • Wang Q., Jiang B., Xue Q.F., Sun H.L., 2015. Experimental investigation on EV battery cooling and heating by heat pipes. Applied Thermal Engineering, 88: 54–60. DOI: 10.1016/j.applthermaleng.2014.09.083.
  • Xu X., Fu J., Ding R., Jin H., Xiao Y., 2018. Heat dissipation performance of electric vehicle battery liquid cooling system with double-inlet and double-outlet channels. Journal of Renewable and Sustainable Energy, 10, 055701. DOI: 10.1063/1.5037433.
  • Yang S., Ling Ch., Fan Y., Yang Y., Tan X., Dong H., 2019. A Review of Lithium-Ion Battery Thermal Management System Strategies and the Evaluate Criteria. International Journal of Electrochemical Science, 14: 6077–6107. DOI: 10.20964/2019.07.06.
  • Zhang C.-W., Xu K.-J., Li L.-Y., Yang M.-Z., Gao H.-B., Chen S.-R., 2018. Study on a battery thermal management system based on a thermoelectric effect. Energies, 11(2): 279. DOI: 10.3390/en11020279.
  • Zhao C., Sousa A.C.M., Jiang F., 2019. Minimization of thermal non-uniformity in lithium-ion battery pack cooled by channeled liquid flow. International Journal of Heat and Mass Transfer, 129: 660–670. DOI: 10.1016/j.ijheatmasstransfer.2018.10.017.
  • Zhao J., Rao Z., Li Y., 2015. Thermal performance of minichannel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery. Energy Conversion and Management, 103: 157–165. DOI: 10.1016/j.enconman.2015.06.056.
  • Zhao R., Zhang S., Gu J., Liu J., 2015. A review of thermal performance improving methods of lithium ion battery: Electrode modification and thermal management system. Journal of Power Sources, 299: 557–577. DOI: 10.1016/j.jpowsour.2015.09.001.
  • Zheng Y., Shi Y., Huang Y., 2019. Optimisation with adiabatic interlayers for liquid-dominated cooling system on fast charging battery packs. Applied Thermal Engineering, 147: 636–646. DOI: 10.1016/j.applthermaleng.2018.10.090.
  • Zohuri B., 2016. Heat pipe design and technology: Modern applications for practical thermal management, second edition. Springer, Cham., Germany: 1–539.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ef84598-5f61-4fec-ade5-9721f7f959bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.