Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Ionic liquids are widely used in supported ionic liquid membranes technology, especially in gas separation and purification processes. This work characterizes the ability of ionic liquids to wet commercially available porous supports used for such purposes. Characterization of supports and membrane phases was carried out in order to determine factors influencing wetting process. Experimental method based on capillary rise is widely used for porous media characterization (i.e. pore radius, contact angle). Measurements of penetration distance or liquid mass are two main experimental methods, in which the Washburn equation is a basic instrument to analyze the obtained results. However, polymeric porous supports do not meet Washburn assumptions and the method is loaded with human errors, so the sessile drop method was used. The rate of wetting influences swelling effects and therefore changes in permeation path during gas separation processes are observed. Influence of ionic liquids structure on wetting and swelling of porous supports was investigated. The families of 1-alkyl-3-methylimidazolium (Cnmim), ammonium (Nnnnn), 1-alkyl-1-methylpyrrolidinium (CnPyrr) and 1-alkylpyridinium (CnPy) compounds with variable alkyl chain lengths in cation structures and changeable anions were taken into account in wetting and swelling experiments.
Słowa kluczowe
Rocznik
Tom
Strony
373--386
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Department of Chemical Technology, Gdansk University of Technology, ul. Narutowicza 11/12, Gdansk, Poland
autor
- Department of Chemical Technology, Gdansk University of Technology, ul. Narutowicza 11/12, Gdansk, Poland
autor
- Department of Chemical Technology, Gdansk University of Technology, ul. Narutowicza 11/12, Gdansk, Poland
Bibliografia
- 1. BERTHOD A., RUIZ-ANGEL M.J., CARDA-BROCH S., 2008, Ionic liquids in separation techniques, J. Chromatogr. A 1184, 6–18.
- 2. CADENA C., ANTHONY J.L., SHAH J.K., MORROW T.I., BRENNECKE J.F., MAGINN E.J., 2004, Why is CO2 so soluble in imidazolium-based ionic liquids?, J. Am. Chem. Soc. 126, 5300–5308.
- 3. CHIAPPE C., PIERACCIN D., 2005, Ionic liquids: solvent properties and organic reactivity, J. Phys. Org. Chem. 18, 275–297.
- 4. CICHOWSKA-KOPCZYNSKA I., JOSKOWSKA M., DĘBSKI B., ŁUCZAK J., ARANOWSKI R., 2013, Influence of Ionic Liquid Structure on Supported Ionic Liquid Membranes Effectiveness in Carbon Dioxide/Methane Separation, J. Chem. 2013, 1–10.
- 5. CICHOWSKA-KOPCZYNSKA I., JOSKOWSKA M., WOJCIECHOWSKA A., ARANOWSKI R., 2013, Preparation and physicochemical characterisation of ceramic supports for supported liquid membranes, Physicochem. Probl. Miner. Process. 49, 287–300.
- 6. DANESI P.R., REICHLEY-YINGER L., RICKERT P.G., 1987, Lifetime of supported liquid membranes: the influence of interfacial properties, chemical composition and water transport on the long–term stability of the membranes, J. Membr. Sci. 31, 117–145.
- 7. DANG-VU T., HUPKA J., 2005, Characterization of porous materials by capillary method, Physicochem. Probl. Miner. Process. 39, 47–65.
- 8. EXPERT PANEL OF THE COSMETIC INGREDIENT, 1983, Final report on the safety assessment of triethanolamine, diethanolamine, and monoethanolamine, Int. J. Toxicol., 183–235.
- 9. FERRARIS M., SALVO M., SMEACETTO F., AUGIER L., BARBIERI L., CORRADI A., LANCELLOTTI I., 2001, Glass matrix composities from solid waste materials, J. Eur. Ceram. Soc. 21, 453–460.
- 10. FORTUNATO R., AFONSO C.A.M., BENAVENTE J., RODRIGUEZ-CASTELLÓN E., CRESPO J.G., 2005, Stability of supported ionic liquid membranes as studied by X-ray photoelectron spectroscopy, J. Membr. Sci. 256, 216–233.
- 11. FORTUNATO R., AFONSO C.A.M., REIS A.M., CRESPO J.G., 2004, Supported liquid membranes using ionic liquids: study of stability and transport mechanisms, J. Memb. Sci. 242, 197–209.
- 12. FREIE M.G., CARVALHO P.J., FERNANDEZ A.M., MARRUCHO I.M., QUEIMADA A.J., COUTINHO J.A.P., 2007, Surface tensions of imidazolium based ionic liquids: Anion, cation, temperature and water effect, J. Colloid Interface Sci. 314, 621–630.
- 13. GAMER A.O., ROSSBACHER R., KAUFMANN W., VAN RAVENZWAAY B., 2008, The inhalation toxicity of di- and triethanolamine upon repeated exposure, Food Chem. Toxicol. 46, 2173–2183.
- 14. HERNANDEZ-FERNANDEZ F.J., DE LOS RIOS A.P., ALONSO F.T., PALACIOS J.M., WILLORA G., 2009, Preparation of supported ionic liquid membranes: Influence of the ionic liquid immobilization method on their operational stability, J. Membr. Sci. 341, 172–177.
- 15. IZAK P., HOVORKA S., BARTOVSKY T., BARTOVSKA L., CRESPO J.G., 2007, Swelling of polymeric membranes in room temperature ionic liquids, J. Membr. Sci. 296, 131–138.
- 16. JOSKOWSKA M., KOPCZYNSKA I., DEBSKI B., HOLOWNIA-KEDZIA D., ARANOWSKI R., HUPKA J., 2012, Wetting of supports by ionic liquids used in gas separation processes, Physicochem. Probl. Miner. Process. 48, 129–140.
- 17. KHUPSE N.D., KUMAR A., 2010, Contrasting Thermosolvatochromic Trends In Pyridinium-, Pyrrolidinium-, and Phosphonium-Based Ionic Liquids, J. Phys. Chem. B 114, 367–381.
- 18. KITTEL J., IDEM R., GELOWITZ D., TONTIWACHWUTHIKUL P., PARRAIN G., BONNEAU A., 2009, Corrosion in MEA units for CO2 capture: pilot plant studies, Energy Procedia 1, 791–797.
- 19. KLOMFAR J., SOUCKOVA M., PATEK J., 2009, Surface Tension Measurements for Four 1–Aklyl–3-methylimidazolium-Based Ionic Liquids with Hexafluorophosphate Anion, J. Chem. Eng. Data 54, 1389–1394.
- 20. LEE J.M., PRAUSNITZ J.M., 2010, Polarity and hydrogen-bond-donor-strenght for some ionic liquids: Effect of alkyl chain lenght on the pyrrolidinium cation, Chem. Phys. Lett. 492, 55–59.
- 21. LETCHER T.M., 2007. Thermodynamics, solubility and environmental issues, Elsevier, Amsterdam.
- 22. NAPLENBROEK A.M., BARGEMAN D.,SMOLDERS C.A., 1992, Supported liquid membranes: instability effects, J. Membr. Sci. 67, 121–132.
- 23. NGUYEN L.N., HAI F.I., PRICE W.E., NGHIEM L.D., 2012, Removal of trace organic contaminants by a membrane bioreacor–granular activated carbon (MBR–GAC) system, Bioresour. Technol. 113, 169–173.
- 24. POLESKI M., ŁUCZAK J., ARANOWSKI R., JUNGNICKEL C., 2013, Wetting of surfaces with ionic liquids, Physicochem. Probl. Miner. Process. 49, 277–286.
- 25. SCHAFFER A., BRECHTEL K., SCHEFFKNECHT G., 2011, Comparative study on differently concentrated aqueous solutions of MEA and TETA for CO2 capture from flue gas, Fuel 101, 148–153.
- 26. SEDEV R., 2011, Surface tension, interfacial tension and contact angles of ionic liquids, Curr. Opin. Colloid Interface Sci. 16, 310–316.
- 27. SOHN W.I., RYU D.H., OH S.J., KOO J.K., 2000, A study on the development of composite membranes for the separation of organic vapors, J. Membr. Sci. 175, 163–170.
- 28. TADKAEW N., HAI F.I., MCDONALD J.A., KHAN S.J., NGHIEM L.D., 2011, Removal of trace organics by MBR treatment: the role of molecular properties, Water Res. 45, 2439–2451.
- 29. TERAMOTO M., SAKAIDA Y., FU S., OHNISHI N., MATSUYAMA H., MAKI M., FUKUI T., ARAI K., 2000, An attempt for the stabilization of supported liquid membrane, Sep. Purif. Technol. 21, 137–144.
- 30. TRONG D., HUPKA J., DRZYMAŁA J., 2006, Impact of roughness on hydrophobicity of paricles measured by the Washburn method, Physicochem. Probl. Miner. Process. 40, 45–52.
- 31. TRONG D.,HUPKA J., 2005, Chatacterization of porous materials by capillary rise method, Physicochem. Probl. Miner. Process. 39, 47–65.
- 32. WALCZYK H., 2006, Niskotemperaturowa kondensacja lotnych związków organicznych w obecności gazu inertnego w spiralnym wymienniku ciepła, Prace Naukowe IICh PAN 6, 7–127.
- 33. WASSERSCHEID P., KEIM W., 2000, Ionic Liquids – New „Solutions“ for Transition Metal Catalysis, Angew. Chem. Int. Ed. 39, 3772–3789.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ef1df62-37ee-49b2-8bdd-289633480da3