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1. Introduction

Meeting contractual obligations is one of the factors that affect 
operational efficiency of an enterprise. Hence, prompt delivery of 
a contracted quantity and quality of products is a key task of every 
company. On the one hand, the use of state-of-the-art manufacturing 
techniques and advanced production processes enables companies to 
meet contractual obligations; on the other, it poses problems regard-
ing reliability of production equipment. Consequently, the actions 
supporting operations taken by a company’s maintenance department 
(production equipment must be kept in constant operational efficiency 
by controlling technical condition of machines and devices) become 
increasingly significant. According to Legutko [1], operation is the 
whole of phenomena, processes and events that occur during the pe-
riod of existence of a device, from the moment of its construction 
until its withdrawal from use. When used with respect to maintenance, 
the term “efficiency” is defined as a property of people or technical 
objects which determines whether they meet different requirements, 
e.g. in terms of reliability, economy or quality. Operational efficiency 
is a quotient of effects produced in a fixed time interval of duration 
of a given state of an operating object to the costs of achieving these 
effects. Increasing operational efficiency of machines via failure pre-
diction and restoring full efficiency of a production system, ensures 
prompt completion of contractual obligations, which – in turn – means 
higher profits of the enterprise. This is of key importance given the 

strong competition between enterprises, where constant improvement 
of manufacturing systems, development of production technologies 
and production automation solutions are key to success.   

The growing interest in predictive maintenance combined with 
the problem of unused data collected by systems monitoring machine 
park operations have inspired the present authors to undertake studies 
aimed at verification the effectiveness of failure prediction by station-
ary tests. Additionally, on detecting alarming symptoms, residual time 
of machinery operation was determined, too. Seasonal changes in am-
bient conditions can have a negative impact on values of observed 
state parameters and, thus, on the efficiency of predictions made using 
stationary tests. If this is the case, it is necessary to present assump-
tions concerning investigated signals (the effect of changes in am-
bient conditions on observation vector values). Since the simulation 
assumed maintaining constant ambient temperature conditions, its 
impact on non-stationarity was not taken into consideration. 

2. Effect of maintenance activities on operational ef-
ficiency 

The observations made in the field of maintenance demonstrate 
that the dominant trend in most  enterprises is to repair machines and 
devices only after failure, as a result of which the time for response 
actions exceeds the time for planned operations. This leads to a de-
crease in operational efficiency. In addition to this, poor condition 
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3. Stationary processes and system reliability 

The behaviour of physical, economic and technical systems is 
usually described by mathematical models. First, based on historical 
data, values of structural parameters are determined, and then, follow-
ing parametric identification, these models can be used to predict the 
behaviour of systems being described. The behaviour of machines and 
devices is often predicted by time series models. By predicting future 
values of system states, we can draw conclusions about a possibility 
of failure of machines and devices. 

Time series can be divided into stationary and non-stationary (see 
e.g. [2, 11, 7, 27]).

Definition 1. The time series { }
0t t Nx ∈

is said to be strict station-

ary if for every m N∈ , any 1 2 ... mt t t< < <  and every Nτ ∈ the joint 
distributions of the probability of m  elements of random sequences  

1 2
, ,...,

mt t tx x x  and 
1 2

, ,...,
mt t tx x xτ τ τ+ + +  are identical. 

Therefore, for stationary time series, the statistical and dynamical 
properties for any time shift remain unchanged. Given the above, the 
mean and variance of the elements of the time series { }

0t t Nx ∈  are 
constant over time. 

Definition 2. The time series { }
0t t Nx ∈

is said to be homogeneous 

non-stationary (homoscedastic) if, by separating a non-random com-
ponent from the time series, we obtain a stationary series.  Homoge-
nously non-stationary series can contain among others a deterministic 
or stochastic trend; they can have a seasonal or periodic character. 
Following the application of a differential operator, such series can be 
reduced to stationary series [2, 11].

Definition 3. The time series { }
0t t Nx ∈

 is said to be integrated of 

order d  (defined by x I dt t N{ } ∈ ( )∈ 0
) if the series ∆k

t t k
x{ }

≥
 for 

0 k d≤ <  is non-stationary, while the series ∆d
t t d

x{ }
≥

 is said to be 

stationary, where the differential operator ∆  is defined as 

1t t tx x x −∆ = − , while 1
1

k k k
t t tx x x+

−∆ = ∆ − ∆  for k N∈  (see e.g. [2, 
11, 15, 27]). 

The stationarity of time series is most often investigated by the 
augmented Dickey-Fuller test [7], the Kwiatkowski-Phillips-Schmidt-
Shin test [16], Philips-Perron test [28] (they are examples of unit root 
tests also known as stationary tests). 

The above tests for time series analysis can be used to investigate 
reliability of systems and devices. If the results of classical unit root 
tests confirm the presence of stationarity (static and dynamic proper-
ties remain unchanged) and values of the system state are within a 
fixed range (belong to acceptable interval), then – given the lack of 
alarming symptoms – it is stated that the system behaves correctly. If 
it is found (based on the realization state system) that the quality of 
stationarity is not met, i.e. the system’s behaviour contains a linear, 
polynomial trend (depending on integration degree), it is an alarming 

symptom. By using the differential operator d∆  the non-stationary 

homoscedastic time series { }
0t t Nx ∈

 can be reduced to the stationary 

series ∆d
t t d

x{ }
≥

 (for more information see [2, 15, 27]). The integra-

tion order d  defines the degree of a polynomial approximating for 
deterministic part in a time series (dependence between differentia-
tion and polynomial trend is exhaustively discussed in [15, Section 
2.4]). Next, using the least squares method, we determine a determin-
istic trend in the time series and then, based on prediction of behavior 
of the time series, we determine the expected time to exceeding ac-
ceptable values for a given system (alarming critical values) – residu-
al operation time of a device. The subsequent section presents classi-

of technical infrastructure leads to lower productivity generating ad-
ditional losses. The actions taken to improve operational efficiency 
of enterprises should hence strive to eliminate waste in the form of 
inefficient work of both machines and maintenance staff. The indica-
tors listed in the standard EN15341 [29] for determining maintenance 
services efficiency can be useful for verification of the efficiency of 
implemented improvements [23]. One of the most widely applied in-
dicators is Overall Equipment Effectiveness (OEE) [1, 20, 19]. The 
considerations of ways of improving the functioning of maintenance 
and repair sector management also point to connections between op-
erational efficiency level and its selected structure [20, 23].

Maintenance operations are undertaken to:
maintain specific quality of products/services–– ,
prolong as much as possible the operation life of production ––
equipment,
ensure conditions for safe operation of machines and devices, ––
reduce production costs as much as possible––  by limiting pro-
duction breaks.

The above actions can be implemented following determination 
of a machine or process state by physical quantities. The behaviour 
of machines or production processes is modelled by equations of state 
described by some functions ( ),   f t t T∈ , where the independent 
variable t  is a time variable, while T is a time interval. The deter-
mination of state of a technical object is called diagnosing. Figure 1 
shows schematically processes that occur in production and types of 
diagnosed working and accompanying processes. 

What can occur in operational processes are random events 
caused, among others, by human error, impact of natural environment 
and operational environment. With wise modelling of random factors 
that affect behaviour of machines and production processes, we can 
increase operational efficiency of such objects [18, 24]. It can there-
fore be claimed that maintenance is one of the key processes that have 
a direct impact on increasing operational efficiency. 

The efficiency of a machine park depends on operations which 
provide a basis for preventive maintenance. This means that deci-
sions concerning machinery maintenance operations are taken based 
on technical and operational documentation. According to the predic-
tive maintenance approach [4], the moment of maintenance opera-
tions in a production process should be scheduled based on machin-
ery condition. For this reason, symptom monitoring, particularly in a 
non-invasive way, becomes more and more popular. The moments of 
machine maintenance operations are scheduled based on observation 
of residual processes using, among others, infrared cameras [37], vi-
broacoustic sensors [31] and pressure sensors [6]. Residual processes 
are thermal, frictional, electric and vibroacoustic (vibrations, noise, 
fluctuation of a working medium  in the machine), and can often be a 
symptom or determinant of wear [5].

Fig. 1.	 Schematic representation of processes occurring in a machine and of 
methods for diagnosing working and accompanying processes [1]
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cal stationary tests that are employed to determine the moment of 
taking a decision with respect to device maintenance operations.

4. Stationary tests

Maintenance can be achieved by repairing devices that restore 
efficiency of technical infrastructure. Maintenance dates are usually 
scheduled based on technical and operational documentation. The 
problem occurs when such actions are to be taken based on the real 
condition of a machine. To obtain information regarding the necessity 
of repair based on analysis of the diagnostic parameter, we used time 
series stationary tests. 
Below, we present two classical stationary tests: ADF and KPSS. 

To perform the augmented Dickey-Fuller test (ADF) [see e.g. 8, 
11, 15, 27], it is necessary to consider the time series { }

0t t Nx ∈
 with 

the state equation:

	 ∆ ∆x x xt t t i t
i

k
= + +− −

=
∑θ ε1

1
, 	 (1)

where εt t N{ } ∈  is a sequence of independent random variables with 

the normal distribution N 0 2,σ( ) . The order of autoregression k N∈  
should be set such to eliminate correlations between the elements of 

the series εt t N{ } ∈ . Then, at the significance level α , we construct a 

null hypothesis that the time series { }
0t t Nx ∈

 is non-stationary (i.e. we 

take that θ = 0, therefore { } ( )
0t t Nx I d∈ ∈  and 1d ≥ ). As an alterna-

tive hypothesis, we take that the time series { }
0t t Nx ∈

 is stationary (i.e. 

θ ∈ −( )2 0, , therefore { } ( )
0

0t t Nx I∈ ∈ ). The test statistics:

	
ˆ

DF
S

=
( )
θ
θ

	 (2)

has a Dickey-Fuller distribution, where θ̂  is an estimator of the θ  

parameter, while S θ( )  denotes the standard deviation of this param-
eter. The estimator of the θ  parameter and standard deviation are 
determined by the least squares method. Based on the Dickey-Fuller 

distribution tables, we determine a critical value *DF . If *DF DF≤ , 
then at the significance level α  there are no grounds to reject the null 
hypothesis, therefore the elements of the series { }

0t t Nx ∈  are integrat-

ed to one or higher (i.e. we take that the series { }
0t t Nx ∈  is non-sta-

tionary). If *DF DF< , then on the significance level α  we reject the 
working hypothesis in favour of an alternative hypothesis and take 

that the series { }
0t t Nx ∈

 is stationary. If it is found that the series 

{ }
0t t Nx ∈

is non-stationary, we additionally test the stationarity of the 

series ∆d
t t d

x{ }
≥

 for d ≥ 1 in order to determine the degree of a poly-

nomial approximating deterministic part of the series { }
0t t Nx ∈ .

The verification of time series stationarity can be done based on 
the Kwiatkowski-Phillips-Schmidt-Shin test [see e.g. 11, 14, 15, 27] 

(KPSS test). Therefore, we must consider the series { }
0t t Nx ∈  with the 

state equation:

	 x t rt t t= + +β ε , 	 (3)

where εt t N{ } ∈  is a sequence of independent random variables with 

the normal distribution N 0 2,σ( ) . The process { }
0t t Nr ∈

denotes a ran-
dom walk process 

	 r rt t t= +−1 ν , 	 (4)

where ν t t N{ } ∈  is a series of independent random variables with the 

normal distribution N v0 2,σ( ) . At the significance level α  we con-

struct the null hypothesis that the time series { }
0t t Nx ∈

 is stationary 

(i.e. we take that σv
2 0= , then the elements of the series { }

0t t Nr ∈
 are 

constant and { } ( )
0

0t t Nx I∈ ∈ ). As an alternative hypothesis, we take 

that the time series { }
0t t Nx ∈  is non-stationary (i.e. we take that 

σv
2 0> , then { }

0t t Nr ∈
 denotes a random walk process, which causes 

that the elements of the series { }
0t t Nx ∈  are created as the sum of ele-

ments of a stationary εt t N{ } ∈  and non-stationary { }
0t t Nr ∈

 series). 

For realization { }1t t nx ≤ ≤  we use the least squares method to estimate 

values of parameters of the model (3) and to determine the test statis-

tics: 

	 η =
( )

=
∑ S

n S k

t
t

n
2

1
2 2

,	 (5)

where St i
i

t
=

=
∑ε

1
, S k

n
w s ki

i

n
t t s

t s

n

s

k
2 2

1 11

1 2( ) = + ( )










=
−

= +=
∑ ∑∑ε ε ε, , 

weights ( ), 1
1

sw s k
k

= −
+

 while k  denotes the order of delay. From 

the tables of the  KPSS test, we take the limit value η* . If η η< * , 
then at the significance level α  there is no ground for rejecting the 
null hypothesis, therefore it is taken that the elements of the time se-

ries { }
0t t Nx ∈

 are integrated in order zero (we take that the series 

{ }
0t t Nx ∈

 is stationary). If η η≥ * , then at the significance level α ,  

we reject the null hypothesis in favour of an alternative hypothesis 
and take that that the series { }

0t t Nx ∈  is non-stationary.

An algorithm of the proposed approach consisting in assessment 
of stationarity of time series of temperature is illustrated in Fig. 2.
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5. Use of stationary tests for analysis of production 
machinery reliability 

Direct reading of device parameters allows us to find whether this 
device operates correctly (if the parameter value is within the accept-
able limit) or not. The use of stationary tests during monitoring of 
machinery operation enables real-time verification of whether these 
machines operate correctly.  If non-stationarity is detected in a time 
series by the least squares method, it is necessary to determine a trend 
in this time series, predicting in this way the behaviour and residual 
operation time of the device. The moment of determining non-station-
arity in the time series is the moment of taking a decision about de-
vice maintenance (a maintenance operation date must be scheduled). 
If the remaining time for production realization does not exceed the 
residual operation time, then the production maintenance should be 
done following production process/contractual obligation; otherwise, 
it is necessary to schedule a maintenance date which does not exceed 
the residual operation time. 

Below, we present the simulations of monitoring correct operation of 
production machinery by stationary testing. To this end, we used the ADF 
and KPSS tests. The simulations were performed using the MATLAB 
programme. The generated numerical values were to represent tem-

perature values read from two sensors. These values were used to cre-
ate dynamically diagrams for these sensors (Fig. 3).

The stationary dynamical testing was conducted based on m -ele-
ment realization of the series { } 20s t s tx − ≤ ≤  for t m≥  (where 20m = ). 

If the observed values are within the acceptable interval ( ),l ub b  and 

the criterion of stationarity is satisfied, then it is concluded that the 
device is operating correctly. If the ADF test results pointed to non-
stationarity, we used the least squares method to determine a trend in 
this time series { } 20s t s tx − ≤ ≤ . In addition, we determined the predicted 

time to exceeding the critical temperature level, the acceptable inter-
val of values being set to (−20°C, 20°C). If the stationary analysis is 
performed based on short realizations of the time series and the device 
is placed in a room where atmospheric conditions does not affect its 
operation, the effect of environment can be omitted. Moreover, the 
selection of duration should be set adequately to the analyzed prob-
lem. Undoubtedly, a value from the previous observation moment is 
of higher informative significance than a value from the previous 
year, which is the so-called “data freshness problem”.

Figure 3 shows the detection of process non-stationarity, residual 
time of correct operation of the device and the probability of the zero 
hypothesis. Based on the realization of { }60 80s sx ≤ ≤  for Sensor 1 by 

the least squares method, we also determined the state equation:

	 x tt t60 5 35 0 492+ = + +. . ,ε 	 (6)

where εt t N{ } ∈  is a sequence of independent random variables with 

the normal distribution ( )0,0.83N . Based on the results, we predict-
ed subsequent temperature values on Sensor 1 using the equation:

	
x x tt t80 80 0 492+ = + +. ,ε

	 (7)

where εt t N{ } ∈  is a sequence of independent random variables with 

the normal distribution ( )0,0.83N  and 80 14.12x = . The predicted 
temperature values are determined by the equation:

	 x Ex x tt t80 80 80 0 492+ += = + . .ˆ 	 (8)

The residual time of correct operation of the device is determined as:

	 ˆτ = ∈ ∉ −( ){ } =+min ; , .t N x t  80 20 20 12 	 (9)

Similar results were produced using the KPSS test during the 
monitoring of temperature reading on Sensor 1. The system user is 
notified about the exceeding of the critical/acceptable temperature 
limit by the information displayed under the diagram  (Fig. 5). The 
simulated stationary test results demonstrate that both the ADF and 
KPSS test are effective methods for failure prediction based on the 
values of one residual process, i.e. temperature. Besides the ADF and 
KPSS tests, homogenous non-stationarity can also be investigated 
using such tests as the Philips-Perron test, Leybourn-McCabe test, 
Engle-Granger cointegration test, Johansen cointegration test, while 
non-homogeneous non-stationarity (heteroscedasticity, e.g. for vibra-
tion analysis) can be investigated by the Engle’s ARCH test, Breusch-
Pagan test, White’s test, etc.

Fig. 2.	 Algorithm of the proposed approach consisting in assessment of sta-
tionarity of time series of temperature (prepared by the authors)

Fig. 3.	 MATLAB-generated diagrams showing temperatures recorded by two 
sensors (developed by the authors)
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6. Conclusions

The control of a machine park is one of the factors that enable 
increasing operational efficiency. While the monitoring of diagnos-
tic parameters does not provide a basis for deciding about the ne-
cessity of taking maintenance and repair activities, this decision can 
be taken based on adequate mathematical models for data analysis. 
One-symptom diagnostics can be performed using statistical station-
ary tests such as the ADF and KPSS tests, as demonstrated by the 
MATLAB simulation. The detection of non-stationarity and the de-
termination of a residual operational time of a device can serve as a 
guideline for maintenance services, signalling that it is necessary to 
undertake maintenance activities regarding subassemblies or machine 
components exhibiting alarming changes. This is proved by the simu-
lation results – the alarming changes in the diagnostic parameter, i.e. 
temperature, were signaled in the programme and, additionally, the 
predicted time to failure occurrence was announced. 

The above statistical tests can be applied for failure predic-
tion due to the fact that they enable analysis of data sets containing 
values of monitored observation vectors describing machine condi-
tion. With the current technologies for recording values of observed 
parameters and easy access to data storage servers, it is possible to 
create extensive collections of data. If the collected data are variable 
and diverse, they are described as big data [33]. 

It must however be stressed that given the multi-symptom 
machinery diagnostics offering a broad perspective on changing 
condition of technical infrastructure, the proposed solution should be 
extended to enable detecting correlations between reduced observa-
tion vectors.  It is therefore recommended establishing a standard 
of model development which is based on independent and complete 
state parameters and fosters optimization of operational efficiency. 
When developing such model, it should also be taken into account 
that some measurement results can be random.

Fig. 4 Notification about process non-stationarity generated due to changes in 
temperature (developed by the authors)

Fig. 5 Notification that the temperature has been exceeded on Sensor 1 (pre-
pared by the authors)
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