PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Forecasting the Flow Coefficient of the River Basin Using Adaptive Fuzzy Inference System and Fuzzy SMRGT Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In hydrology and water resources engineering, predicting the flow coefficient is a crucial task that helps estimate the precipitation resulting in a surface flow. Accurate flow coefficient prediction is essential for efficient water management, flood control strategy development, and water resource planning. This investigation calculated the flow coefficient using models based on Simple Membership functions and fuzzy Rules Generation Technique (SMRGT) and an Adaptive Neuro-Fuzzy Inference System (ANFIS) model. The fuzzy logic methods are used to model the intricate connections between the inputs and the output. Statistical parameters such as the coefficient of determination (R2), the root mean square error (RMSE), the mean absolute error (MAE), and the mean absolute percentage error (MAPE) were used to evaluate the performance of models. The statistical tests outcome for the SMRGT model was (RMSE:0.056, MAE:1.92, MAPE:6.88, R2:0.996), and for the ANFIS was (RMSE:0.96, MAE:2.703, MAPE:19.97, R2:0.8038). According to the findings, the SMRGT, a physics-based model, exhibited superior accuracy and reliability in predicting the flow coefficient compared to ANFIS. This is attributed to the SMRGT’s ability to integrate expert knowledge and domain-specific information, rendering it a viable solution for diverse issues.
Rocznik
Strony
96--107
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Civil Engineering Department, Gaziantep University, Osmangazi district, University Street, 27410 Sehitkamil, Gaziantep, Turkey
autor
  • Civil Engineering Department, Gaziantep University, Yeditepe st., no 85088, Sahinbey dist., Gaziantep, Turkey
Bibliografia
  • 1. Abebe A.J., Solomatine D.P., Venneker R. 2000. Application of adaptive fuzzy rule-based models for reconstruction missing precipitation events. Hydrological Sciences Journal, 45(3), 425–436.
  • 2. Altas E., Aydin M.C., Toprak Z.F. 2018. Modeling of Water Surface Profile in Open Channel Flows by Fuzzy SMRTG Method. Dicle University Journal of Engineering, 9(2), 975–981.
  • 3. Bayri G. 2018. Classification of Soils with Simple Membership Functions and Fuzzy Rules Generation Technique (SMRGT). M.Sc. thesis, Bitlis Eren University, Bitlis, Turkey. [in Turkish]
  • 4. Chow V.T., Maidment D.R., Mays L.W. 1988. Applied hydrology. McGraw-Hill, New York.
  • 5. Dhaoui O., Agoubi B., Antunes I. M., Tlig L., Kharroubi A. 2023. Groundwater quality for irrigation in an arid region-application of fuzzy logic techniques. Environ Sci Pollut Res Int, 30(11), 29773–29789.
  • 6. Fırat M. 2007. Artificial intelligence techniques for river flow forecasting in the Seyhan river catchment-Turkey. Hydrology and Earth System Sciences Discussions, 4(3), 1369–1406.
  • 7. Green W.H., Ampt G.A. 1911. Studies in Soil Physics- Part 1- the Flow of Air and Water through Soils. Journal of Agricultural Science, 4(1), 1–24.
  • 8. Hsu K.L., Gupta H.V., Sorooshian S. 1995. Artificial neural network modeling of the rainfall–runoff process. Water Resources Research, 31(10), 2517–2530.
  • 9. Hu T.S., Wu F.Y., Zhang X. 2007. Rainfall–runoff modeling using principal component analysis and neural network. Nordic Hydrology, 38(3), 235–248.
  • 10. Jang J.S.R. 1993. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665–685.
  • 11. Jiang W.G., Li J., Li Z.W. 2008. Fuzzy assessment of the population risk of the food disaster. J Hunan Univ [Nat Sci], 35(9), 84–87. [in Chinese]
  • 12. Kambalimath S., Deka P.C. 2020. A basic review of fuzzy logic applications in hydrology and water resources. Applied Water Science, 10(8), 1–14.
  • 13. Keskin M.E., Taylan D. 2009. Artificial Intelligent models for flow estimation in basins southern Turkey. Journal of Hydrological Engineering, 14(7), 752–758.
  • 14. Karakaya D. 2018. Modelling of flow coefficient with fuzzy SMGRT method. M.Sc.thesis, Dicle University, Diyarbekir, Turkey. [in Turkish]
  • 15. Mao D.H., Wang L.H. 2002. Diagnosis and an assessment on the vulnerability of the urban food-waterlogged disaster in the human province. Resour Environ Yangtze Basin, 11(1), 89–93. [in Chinese]
  • 16. Nayak P.C., Sudheer K.P., Rangan D., Ramasastri K. 2004. A Neuro Fuzzy Computing Technique for Modeling Hydrological Time Series. Journal of Hydrology, 291(1–2), 52–66.
  • 17. Nayak P.C., Sudheer K.P., Ramasastri K.S. 2005. Fuzzy computing based rainfall-runoff model for real-time flood forecasting. Hydrological Processes, 19(4), 55–68.
  • 18. Pesti G., Shrestha B., Duckstein L., Bogardi I. 1996. A fuzzy rule-based approach to drought assessment. Water Resour Res, 32(6), 1741–1747.
  • 19. Razali N.N.C., Ab Ghani N., Hisham S.I., Kasim S., Widodo N.S., Sutikno T. 2020. Rainfall-runoff modeling using adaptive neuro-fuzzy inference system. Indonesian Journal of Electrical Engineering and Computer Science, 17(2), 1117–1126.
  • 20. Santos C., Silva G. 2014. Daily streamflow forecasting using a wavelet transform and artificial neural network hybrid models. Hydrological Sciences Journal, 59(2), 312–324.
  • 21. Sevgin F. 2021. Flood Modeling With the Fuzzy SMRGT Method and an Example of the Kalecik Basin. Ph.D. thesis, Dicle University, Diyarbekir, Turkey. [in Turkish]
  • 22. Sevgin F., Toprak Z.F. 2019. Determination of Murat Basin Flow Coefficient by Fuzzy SMRGT Approach. 10th International Hydrology Conference, 1, 507–515. [in Turkish]
  • 23. Toprak Z.F. 2009. Flow Discharge Modeling in Open Canals Using a New Fuzzy Modeling Technique (SMRGT). CLEAN-Soil, Air, Water, 37(9), 742–752.
  • 24. Toprak Z.F., Songur M., Hamidi N., Gulsever H. 2013. Determination of Losses in Water Networks Using a New Fuzzy Technique (SMRGT). Global Journal on Technology, 3, 833–840.
  • 25. Toprak Z.F., Tporak A., Aykac Z. 2017. Practical applications of the fuzzy SMRGT method. Dicle University Journal of Engineering, 8(1), 123–132.
  • 26. USDA, Soil Conservation Service. 1972. Hydrology. In: National Engineering Handbook, Washington.
  • 27. Unes F., Demirci M., Zelenakova M., Calisici M., Tasar B., Vranay F., Kaya Y.Z. 2020. River Flow Estimation Using Artificial Intelligence and Fuzzy Techniques. Water, 12(9), 2427.
  • 28. Ullah N., Choudhury P. 2013. Flood Flow Modeling in a River System Using Adaptive Neuro-Fuzzy Inference System. Environmental Management and Sustainable Development, 2(2), 54–68.
  • 29. Vernieuwe H., Georgieva O., De Baets B., Pauwels V.R.N., Verhoest N.E.C., De Troch F.P. 2005. Comparison of data-driven Takagi–Sugeno models of rainfall–discharge dynamics. Journal of Hydrology, 302(1–4), 173–186.
  • 30. Yalaz S., Atay A., Toprak Z.F. 2016. Fuzzy Linear Regression for Time-Related Data with Fuzzy SMRGT Method. Journal of Natural and Applied Sciences, 20(3), 405–413.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3eea5078-c611-4167-a5f6-1cc1ce458cc7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.