Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Citronellyl acetate is a crucial component of flavor and fragrance in the food, cosmetic, and pharmaceutical sectors. In non-aqueous media, it can be successfully produced via lipase catalysis. This study focuses on the lipase-catalyzed trans-esterification of citronellol alcohol with geranyl acetate ester in a non-aqueous medium to produce citronellyl acetate. For the synthesis of citronellyl acetate, crude acetone powders isolated from several plant seedlings of black cumin, fenugreek, coriander, flax, and rape seed were examined for lipase activity. Black cumin seedling lipase had the highest level of citronella acetate production with a yield of 76.32% in 72 h of reaction time. To assess the impact of different reaction parameters on citronellyl acetate production in organic solvents, hexane was chosen as the best solvent, and black cumin seedling lipase was selected as the best biocatalyst. The highest conversion yield of ester (76.32%) was found when 0.25 M of geraniol acetate and 0.25 M of citronellol reacted at 41° C after 72 h in the presence of 0.25 g of seedling lipase enzyme in n-hexane. It has been determined that crude black cumin seedling lipase is inexpensive yet effective and has the potential to be used industrially for the synthesis of terpene esters.
Czasopismo
Rocznik
Tom
Strony
8--15
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wz.
Twórcy
autor
- Department of Food Science and Technology, The University of Haripur, 22620, KPK, Pakistan
autor
- Department of Food Science and Technology, The University of Haripur, 22620, KPK, Pakistan
autor
- Department of Food Science and Technology, The University of Haripur, 22620, KPK, Pakistan
autor
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan.
autor
- Department of Biotechnology University of Malakand Chakdara 18800 Pakistan
autor
- Department of Biotechnology University of Malakand Chakdara 18800 Pakistan
autor
- Laboratory of Animal Health, Food Hygiene and Quality, University of Ioannina Arta 47100 Greece
autor
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
Bibliografia
- 1. Adamczak, A., Ożarowski, M. & Karpiński, T.M. (2020). Curcumin, a natural antimicrobial agent with strain-specific activity. J. Pharm. Pap. 16, 13(7), 153. DOI: 10.3390/ph13070153.
- 2. Al-Haidari, A.M.-D., Alsaadawi, I.S. & Khudhair, S.H. (2021). Determination the optimum conditions of the activity and stability of lipase extracted from sunflower germinated seeds. Iraqi J. Sci. Pap. 26, 431–440. DOI: 10.24996/ijs.2021.62.2.8.
- 3. Aziz, T., Qadir, R., Anwar, F., Naz, S., Nazir, N., Nabi, G., Haiying, C., Lin, L., Alharbi, M. & Alasmari, A.F. (2023). Optimal Enzyme-Assisted Extraction of Phenolics from Leaves of Pongamia pinnata via Response Surface Methodology and Artificial Neural Networking. Appl. Biochem. Biotechnol. 22, 1–8. DOI: 10.1007/s12010-024-04875-w.
- 4. Chudhary A, Aihtesham A, Younas S, Basheer N, Hussain N, Naz S, Aziz T, Albekairi T. (2024). Statistical optimization for comparative hydrolysis and fermentation for hemicellulosic ethanolgenesis Italian J. Food Sci, 2024; 36(2): 231–245. DOI 10.15586/ijfs.v36i2.2526
- 5. Anwar, M., Rasul, M.G., & Ashwath, N. (2018). Production optimization and quality assessment of papaya (Carica papaya) biodiesel with response surface methodology. Energy Convers. Manag. Pap. 156, 103–112. DOI: 10.1016/j.enconman.2017.11.004.
- 6. Baek, Y., Lee, J., Son, J., Lee, T., Sobhan, A., Lee, J., Koo, S.-M., Shin, W. H., Oh, J.-M. & Park, C. (2020). Enzymatic synthesis of formate ester through immobilized lipase and its reuse. J. Polym. Pap. 12, 1802. DOI: 10.3390/polym12081802.
- 7. Baltaci, M.O., Orak, T., Taskin, M., Adiguzel, A. & Ozkan, H. (2020). Enhancement of amylase and lipase production from Bacillus licheniformis 016 using waste chicken feathers as peptone source. J. Waste Manag. Pap. 11, 1809–1819. DOI: 10.1155/2013/329121.
- 8. Carrea, G. & Riva, S. (2000). Properties and synthetic applications of enzymes in organic solvents. Angew. Chem. Pap. 39, 2226–2254. DOI: 10.1002/1521-3773(20000703)39:13<2226:AIDANIE2226>3.0.CO;2-L.
- 9. Cavalcante, F.T.T., Neto, F.S., De Aguiar Falcão, I.R., Da Silva Souza, J.E., De Moura Junior, L.S., Da Silva Sousa, P., Rocha, T.G., De Sousa, I.G., De Lima Gomes, P.H. & De Souza, M.C.M. (2020). Opportunities for improving biodiesel production via lipase catalysis. J. Waste Manag. Pap. 9, 119577. DOI: 10.1016/j.fuel.2020.119577.
- 10. De Oliveira, D., Di Luccio, M., Faccio, C., Dalla Rosa, C., Bender, J. P., Lipke, N., Amroginski, C., Dariva, C. & De Oliveira, J.V. (2022). Optimization of alkaline transesterification of soybean oil and castor oil for biodiesel production. Twenty-sixth symposium on biotechnology for fuels and chemicals. Springer Sci. Rev. Pap. 3(46), 553–560.
- 11. Dhouibi, R., Oueslati, H., Bahri, S., Jabou, K. & Bahri, S. (2021). Chemical composition of germinating Tunisian almond (Prunus Amygdalus Mill.) seedlings oil. Kuwait J. Sci. Pap. 48. DOI: 10.48129/kjs.v48i2.9308.
- 12. El Rassi, Z., Lee, A.L. & Horváth, C. (2020). Reversed-phase and hydrophobic interaction chromatography of peptides and proteins. J. Sep. Sci. Pap. 5(63), 447–494.
- 13. Esonye, C., Onukwuli, O.D. & Ofoefule, A.U. (2019). Optimization of methyl ester production from Prunus Amygdalus seed oil using response surface methodology and artificial neural networks. J. Renew. Energy. Pap. 130, 61–72. DOI: 10.1016/j.renene.2018.06.036.
- 14. Guimarães, A.C., Meireles, L.M., Lemos, M.F., Guimarães, M.C.C., Endringer, D.C., Fronza, M. & Scherer, R. (2019). Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules. Pap. 24, 2471. DOI: 10.3390/molecules24132471.
- 15. Haq, N.U., Liaquat, M., Alharby, H.F., Alzahrani, Y.M., Alghamdi, S.A., Alharbi, B.M., Alabdallah, N.M., Saud, S., Ahmed, M. & Sayyed, R. (2022). Optimization and Purification of Terpenyl Flavor Esters Catalyzed by Black Cumin (Nigella sativa) Seedling Lipase in Organic Media. Front. Sustain. Food Syst. Pap. 6, 915602. DOI: 10.3389/fsufs.2022.915602.
- 16. Kakhki, R.M., Hedayat, S. & Mohammadzadeh, K. (2019). Novel, green and low cost synthesis of Ag nanoparticles with superior adsorption and solar based photocatalytic activity. Journal of materials science: J. Mater. Sci. Mater. Electron. Pap. 30, 8788–8795. DOI: 10.3390/foods10163874.
- 17. Keawkim, K., Lorjaroenphon, Y., Vangnai, K. & Jom, K.N. (2021). Metabolite–Flavor profile, phenolic content, and antioxidant activity changes in sacha inchi (plukenetia volubilis l.) seeds during germination. J. Food Sci. Pap. 10, 2476. DOI: 10.3390/foods10102476.
- 18. Khaledi, N. & Hassani, F. (2021). Effect of seed-borne Fusarium species on constituents of essential oils from seeds of black cumin populations. J. Plant Prot. Res. Pap. 229–242. DOI: 10.1016/S0141-0229(01)00481-1.
- 19. Kuddus, M. (2019). Introduction to food enzymes. Enzymes in food biotechnology. Elsevier.
- 20. Kutyła, M., Trytek, M., Buczek, K., Tomaszewska, E. & Muszyński, S. (2021). Biomass of a Psychrophilic fungus as a biocatalyst for efficient direct esterification of citronellol. Bioenergy Res. Pap. 1–13. DOI: 10.1016/S0141-0229(01)00481-1.
- 21. Liaquat, M., Mehmood, T., Khan, S.-U., Ahmed, Z., Saeed, M., Aslam, S., Khan, J., Ali, N., Jahangir, M. & Nawaz, M. (2015). Parameters affecting the synthesis of (Z)-3-hexen-1-yl acetate by transesterifacation in organic solvent. J. Chem. Soc. Pak. Pap. 37.
- 22. Monteiro, R.R., Virgen-Ortiz, J.J., Berenguer-Murcia, Á., Da Rocha, T.N., Dos Santos, J. C., Alcántara, A.R. & Fernandez-Lafuente, R. (2021). Biotechnological relevance of the lipase A from Candida antarctica. Catal. Today. Pap. 362, 141–154. DOI: 10.1016/j.cattod.2020.03.026.
- 23. Nacer, R. & Chahra, B.-H. (2021). Physical and chemical study of coated Candida cylindracea with sorbitan esters. Res. J. Chem. Environ. Pap. 25, 10. DOI: 10.1016/j. cattod.2020.03.026.
- 24. Nava, O., Luque, P., Gómez-Gutiérrez, C., Vilchis-Nestor, A., Castro-Beltrán, A., Mota-González, M. & Olivas, A. (2017). Influence of Camellia sinensis extract on Zinc Oxide nanoparticle green synthesis. J. Mol. Struct. Pap. 1134, 121–125. DOI: 10.1016/j.molstruc.2016.12.069.
- 25. Oladipo, B., Ojumu, T.V., Latinwo, L.M. & Betiku, E. (2020). Pawpaw (Carica papaya) peel waste as a novel green heterogeneous catalyst for moringa oil methyl esters synthesis: Process optimization and kinetic study. Energies. Pap. 13, 5834. DOI: 10.3390/en13215834.
- 26. Osho, M.B. & Adio, O.Q. (2021). Screening, optimization and characterization of extracellular lipase of Aspergillus niger ATCC 1015. J. Microbiol. Biotechnol. Food Sci. Pap. 40–44.
- 27. Perdomo, I.C., Gianolio, S., Pinto, A., Romano, D., Contente, M.L., Paradisi, F. & Molinari, F. (2019). Efficient enzymatic preparation of flavor esters in water. J. Agric. Food Chem. 67, 6517–6522. DOI: 10.1021/acs.jafc.9b01790.
- 28. Pickersgill, B. (2012). Spices, Routledge. DOI: 10.1111/curt.12210.
- 29. Priyanka, P., Tan, Y., Kinsella, G.K., Henehan, G.T. & Ryan, B.J. (2019). Solvent stable microbial lipases: current understanding and biotechnological applications. Biotechnol. Lett. Pap. 41, 203–220. DOI: 10.1038/343767a0.
- 30. Rajput, R.P.S., Paramakrishnan, N. & Gangadharappa, H. (2021). Cumin (Cuminum cyminum L.) Seed. Oilseeds: Health attributes and food applications. Springer. DOI: 10.1533/9780857095671.250.
- 31. Reinoso, D.M. & Boldrini, D.E. (2020). Kinetic study of fuel bio-additive synthesis from glycerol esterification with acetic acid over acid polymeric resin as catalyst. Fuel. Pap. 264, 116879. DOI: 10.1016/j.fuel.2019.116879.
- 32. Savalas, L.R.T., Sirodjudin, S. & Gunawan, E.R. (2021). Biochemical Properties of Coconut (Cocos nucifera L.) Lipase. Philipp J. Sci. 150, 915–924.
- 33. Shahedi, M., Yousefi, M., Habibi, Z., Mohammadi, M. & As’ Habi, M.A. (2019). Co-immobilization of Rhizomucor miehei lipase and Candida antarctica lipase B and optimization of biocatalytic biodiesel production from palm oil using response surface methodology. J. Renew. Energy. Pap. 141, 847–857. DOI: 10.1016/j.renene.2019.04.042.
- 34. Shahid, A., Jamal, Y., Khan, S.J., Khan, J.A. & Boulanger, B. (2018). Esterification reaction kinetics of acetic and oleic acids with ethanol in the presence of Amberlyst 15. Arab. J. Sci. Eng. Pap. 43, 5701–5709. DOI: 10.1016/j. biotechadv.2010.03.002.
- 35. Shree, S. & Singh, P. (2020). Status, opportunities, and challenges of spice research and development. Sustainable agriculture. Apple Academic Press.
- 36. Sose, M.T., Bansode, S.R. & Rathod, V.K. (2017). Solvent free lipase catalyzed synthesis of butyl caprylate. J. Chem. Sci. Pap. 129, 1755–1760.
- 37. Suo, Y., Fu, H., Ren, M., Liao, Z., Ma, Y. & Wang, J. (2018). Enhanced butyric acid production in Clostridium tyrobutyricum by overexpression of rate-limiting enzymes in the Embden-Meyerhof-Parnas pathway. J. Biotech. Pap. 272, 14–21. DOI: 10.1016/j.jbiotec.2018.02.012.
- 38. Thawornprasert, J., Duangsuwan, W. & Somnuk, K. (2021). Reduction of free fatty acid in low free fatty acid of mixed crude palm oil (lmcpo): Optimization of esterification parameters. Materials Science Forum, Trans. Tech. Publ. Pap. 111–118. DOI: 10.4028/www.scientific.net/MSF.1023.111.
- 39. Trinh, H., Yusup, S. & Uemura, Y. (2018). Optimization and kinetic study of ultrasonic assisted esterification process from rubber seed oil. Bioresour. Technol. Pap. 247, 51–57. DOI: 10.1016/j.biortech.2017.09.075.
- 40. Vergara-Fernández, A., Revah, S., Moreno-Casas, P. & Scott, F. (2018). Biofiltration of volatile organic compounds using fungi and its conceptual and mathematical modeling. Biotechnol. Adv. Pap. 36, 1079–1093. DOI: 10.1016/j.biotechadv.2018.03.008.
- 41. Wang, L., Liu, T., Sun, H. & Zhou, Q. (2018). Transesterification of para-hydroxybenzoic acid esters (parabens) in the activated sludge. J. Hazard. Mater. Pap. 354, 145–152. DOI: 10.1016/j.jhazmat.2018.04.077.
- 42. Arooj, S., Iftikhar, T., Mustafa, S. Ullah, N., Sarwar, A., Nelofar, N., Urahman, S., Aziz T., Alharbi, M., Alshammari, A., Alasmari, AF. (2023). Optimization of critical medium components for lipase production by Neurospora crassa in solid state fermentation. Biomass. Conv. Bioref. 27, 1–9. DOI: 10.1007/s13399-023-05081-0.
- 43. Yuan, M., Cong, F., Zhai, Y., Li, P., Yang, W., Zhang, S., Su, Y., Li, T., Wang, Y. & Luo, W. (2021). Rice straw enhancing catalysis of Pseudomonas fluorescense lipase for synthesis of citronellyl acetate. Bioproc. Biosyst. Eng. Pap. 4(25), 1–12. DOI: 10.1002/bab.2098.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ee8445e-3c17-4646-8da8-1d932aab2c5a