PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of mass parameters and gear ratio on the speed and energy expenditure of a cyclist

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The wavelength of moment of active forces (driving forces) for a full cycle while pedaling with platform pedals was determined. There was defined the value of moment of passive forces, depending on drag, rolling resistance and grade of surface. Kinematic motion parameters were determined from the equation of motion of the machine, which was solved numerically. In numerical example, there were determined and compared the temporal courses of bicycle speed for possible gear ratios for the two different waveforms of the driving torque – the determined, the time-varying and the constant ones. There were compared extreme values of active and passive forces, the kinetic energy of the bike and work expended by the rider at a specified time.
Słowa kluczowe
Rocznik
Strony
47--55
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • University of Life Sciences in Lublin, Department of Physics, Lublin, Poland
  • University of Life Sciences in Lublin, Department of Technical Sciences, Lublin, Poland
Bibliografia
  • [1] ABISS C.R., LAURSEN P.B., Models to explain fatigue during prolonged endurance cycling, Sports Medicine, 2005, 35 (10), 865–898.
  • [2] BERTUCCIA W., GRAPPEA F., GIRARDA A., BETIKA A., ROUILLONC J.D., Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling, J. Biomechanics, 2005, 38, 1003–1010.
  • [3] BINI R.R., DIEFENTHAELER F., MOTA C.B., Fatigue effect on the coordinative pattern during cycling: Kinetics and kinematics evaluation, J. of Electromyography and Kinesiology, 2010, 20, 102–107.
  • [4] BINI R.R., HUME P.A., LANFERDINI F.J., VAZ M.A., Effects of moving forward and backward on the saddle on knee joint forces during cycling, Physical Therapy in Sport, 2013, 14, 23–27.
  • [5] CHANG K. CHO., MYUNG HWAN YUN, CHANG S. YOON, MYUN W. LEE, An ergonomic study on the optimal gear ratio for a multi-speed bicycle, Int. J. of Industrial Ergonomics, 1999, 23, 95–100.
  • [6] COCKCROFT S.J., An evaluation of inertial motion capture technology for use in the analysis and optimization of road cycling kinematics, Stellenbosch University, 2011.
  • [7] DAHMEN T., BYSHKO R., SAUPE D., RODER M., MANTLER S., Validation of a model and a simulator for road cycling on real tracks, Sports Eng., 2011, 14, 95–110.
  • [8] DEBRAUX P., GRAPPE F., MANOLOVA A.V., BERTUCCI W., Aerodynamic drag in cycling: methods of assessment, Sports Biomechanics, 2011, 10, 3, 197–218.
  • [9] DEFRAEYE T., BLOCKEN B., KONINCKX E., HESPEL P., CARMELIET J., Aerodynamics study of different cyclic positions: CFD Analysis and full scale wind tunnel tests, J. Biomechanics, 2010, 43, 1262–1268.
  • [10] DIEFENTHAELER F., CARPES F.P., BINI R.R., MOTA C.B., GUIMARÃES A.C.S., Methodological proposal to evaluate sagittal trunk and spine angle cyclists: Preliminary study, Brazilian Journal of Biomotricity, 2010, Vol. 2, No. 4, 284–293.
  • [11] GREGOR S.M., PERELL K.L., RUSHATAKANKOVIT S., MIYAMOTO E., MUFFOLETTO R., GREGOR R.J., Lower extremity general muscle moment patterns in healthy individuals during recumbent cycling, Clinical Biomechanics, 2002, Issue 2, 17, 123–129.
  • [12] HÖCHTL F., BÖHM H., SENNER V., Prediction of energy efficient pedal forces in cycling using musculosceletal simulation models, Proc. Engineering, 2010, 2, 3211–3215.
  • [13] KONINCKX E., VAN LEEMPUTTE M., HESPEL P., Effect of isokinetic cycling versus mass training on maximal power output and endurance performance in cycling, European Journal of Applied Physiology, 2010, Vol. 109, Iss. 4, 699–708.
  • [14] LEE M.W., LEE W.J., KIM M.S., Multi geared bicycle transmission assembly comprising internal gear sets, 1995, US Patent # 5378201.
  • [15] MOORE J.K., KOOIJMAN J.D.G., SCHWAB A.L., HUBBARD M., Rider motion identification during normal bicycling by means of principal component analysis, Multibody Syst. Dyn., 2011, 25, 225–244.
  • [16] NEPTUNE R.R., HERZOG W., Adaptation of muscle coordination to altered task mechanics during steady-state cycling, Journal of Biomechanics, 2000, 33, 165–172.
  • [17] PARK S.-Y., LEE S.-Y., KANG H.C., KIM S.-M., EMG analysisof lower limb muscle activation pattern during pedaling experiments and computer simulations, Int. J. of Precision Engineering and Manufacturing, 2012, Vol. 13, No. 4, 601–608.
  • [18] PRINCE P.J., AL-JUMAILY A., Bicycle steering and roll responses, Science 15, 2011, Vol. 332, No. 6027, 339–342.
  • [19] RANKIN J.W., NEPTUNE R.R., A theoretical analysis of an optimal chainring shape to maximize crank power during isokinetic pedaling, J. of Biomechanics, 2008, 41, 1494–1502.
  • [20] RASMUSSEN J., Challenges in human body mechanics simulation, Procedia IUTAM. 2011, 2, 176–185.
  • [21] RICARD M.D., HILLS-MEYER P., MILLER M.G., MICHAEL T.J., The effects of bicycle frame geometry on muscle activation an power during a wingate anaerobic test, J. of Sports Science and Medicine, 2006, 5, 25–32.
  • [22] STONE C., HULL M.L., The effect of rider mass on riderinduced loads during common cycling situations, J. Biomechanics, 1995, Vol. 28, No. 4, 365–375.
  • [23] WANICH T., HODGKINS CH., COLUMBIER J.-A., MURASKI E., KENNEDY J.G., Cycling Injuries of the Lower Extremity, J. Am. Acad. Orthop. Surg., 2007, 15, 748–756.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ee36093-598a-48cb-a71d-dfb9bf497a36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.