Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Addition of graphene oxide to increase the performance of concrete
Języki publikacji
Abstrakty
Celem przeprowadzonych badań było wyjaśnienie, w jaki sposób dodanie tlenku grafenu do betonu wpływa na jego wybrane właściwości, a mianowicie: wytrzymałość na ściskanie, rozciąganie oraz zginanie, przepuszczalność powietrza, sorpcyjność, nasiąkliwość, mrozoodporność i przewodnictwo ciepła. W analizowanych seriach próbek stwierdzono, że dodatek tlenku grafenu w większości przypadków zmniejszał wytrzymałość na ściskanie. Jednak równocześnie poprawiał wybrane właściwości, a przede wszystkim wytrzymałość na zginanie – poprawa o 7%, i na rozciąganie – poprawa o 6%, w przypadku betonu z dodatkiem 0,005% tlenku grafenu. Jako planowany zakres badań zaproponowano analizy mieszanek betonowych o większej płynności i metody uśredniania mieszanek.
The aim of the research was to explain how the addition of graphene oxide [GO] to concrete influences performance parameters such as compressive, tensile, and flexural strength, air permeability, sorptivity, absorbability, frost resistance, and thermal conductivity. It was found that the addition of GO in most cases decreased the compressive strength. Nevertheless, an improvement of selected parameters has been observed, eg, an increase in flexural strength by 7% and a split tensile strength by 6% for concrete with GO in the content of 0.005%. Concrete mixes with higher fluidity and improvement of homogenization procedures are suggested for future research areas.
Wydawca
Czasopismo
Rocznik
Tom
Strony
294--306
Opis fizyczny
Bibliogr. 30 poz., il., tab.
Twórcy
autor
- Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry, Płock, Poland
autor
- Orlen Project S.A., Płock, Poland
Bibliografia
- 1. L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka, Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectros. Relat. Phenom. 195 (2014) 145-154. https://doi.org/10.1016/j.elspec.2014.07.003.
- 2. M. Mazurkiewicz-Pawlicka, M. Nowak, A. Malolepszy, A. Witowski, D. Wasik, Y. Hu, L. Stobinski, Graphene oxide with controlled content of oxygen groups as a filler for polymer composites used for infrared radiation shielding. Nanomaterials 10 (2020) 8-11. https://doi.org/10.3390/nano10010032.
- 3. T. Pisarkiewicz, W. Maziarz, A. Małolepszy, L. Stobiński, D. Michoń, A. Rydosz, Multilayer structure of reduced graphene oxide and copper oxide as a gas sensor. Coatings 10 (2020) 1-13. https://doi.org/10.3390/coatings10111015.
- 4. A.M. Dimiev, S. Eigler, red., Graphene oxide. Fundamentals and Applications, John Wiley & Sons, Incorporated, Ontario, 2017. https://ebookcentral-1proquest-1com-10000711y0001.eczyt.bg.pw.edu.pl/lib/wtu/reader.action?docID=4698010.
- 5. G. Wypych, red., Graphene: Important Results and Applications, ChemTec Publishing, Toronto, 2019. https://ebookcentral-1proquest-1com-10000711y0002.eczyt.bg.pw.edu.pl/lib/wtu/reader.action?docID=5721809.
- 6. P. Sikora, M.A. Elrahman, D. Stephan, The influence of nanomaterials on the thermal resistance of cement-based composites - A review. Nanomaterials. 8 (2018) 1-33. https://doi.org/10.3390/nano8070465.
- 7. Z. Zhao, T. Qi, W. Zhou, D. Hui, C. Xiao, J. Qi, Z. Zheng, Z. Zhao, A review on the properties, reinforcing effects, and commercialization of nanomaterials for cement-based materials. Nanotechnol. Rev. 9 (2020) 349-368. https://doi.org/10.1515/ntrev-2020-0023.
- 8. M. Du, H. Jing, Y. Gao, H. Su, H. Fang, Carbon nanomaterials enhanced cement-based composites: Advances and challenges. Nanotechnol. Rev. 9 (2020) 115-135. https://doi.org/10.1515/ntrev-2020-0011.
- 9. C. Liu, X. Huang, Y.Y. Wu, X. Deng, J. Liu, Z. Zheng, D. Hui, Review on the research progress of cement-based and geopolymer materials modified by graphene and graphene oxide. Nanotechnol. Rev. 9 (2020) 155-169. https://doi.org/10.1515/ntrev-2020-0014.
- 10. J. Wang, Y. Xu, X. Wu, P. Zhang, S. Hu, Advances of graphene - and graphene oxide - modified cementitious materials. Nanotechnol. Rev. 9 (2020) 465-477.
- 11. B. Wang, R. Jiang, Z. Wu, Investigation of the Mechanical Propertiesan d Microstructure of Graphene Nanoplatelet-Cement Composite. Nanomaterials. 6 (2016) 200. https://doi.org/10.3390/nano6110200.
- 12. K.R.M. Shareef, S.A. Rawoof, K. Sowjanya, A Feasibility Study on Mechanical Properties of Concrete With Graphene Oxide. Int. Res. J. Eng. Technol. 4 (2017) 218-224. www.irjet.net.
- 13. P. Jinchang, Y. Wang, Graphene oxide on the microstructure and mechanical properties of cement based composite material. Frat. ed Integrità Strutt. 12 (2018) 156-163.
- 14. F. Babak, H. Abolfazl, R. Alimorad, G. Parviz, Preparation and mechanical properties of graphene oxide: Cement nanocomposites, Sci. World J. 2014 (2014). https://doi.org/10.1155/2014/276323.
- 15. E. Horszczaruk, E. Mijowska, R.J. Kalenczuk, M. Aleksandrzak, S. Mijowska, Nanocomposite of cement/graphene oxide - Impact on hydration kinetics and Young’s modulus, Constr. Build. Mater. 78 (2015) 234-242. https://doi.org/10.1016/j.conbuildmat.2014.12.009.
- 16. A. Sedaghat, M.K. Ram, A. Zayed, R. Kamal, N. Shanahan, Investigation of Physical Properties of Graphene-Cement Composite for Structural Applications, Open J. Compos. Mater. 4 (2014) 12-21. https://doi.org/10.4236/ojcm.2014.41002.
- 17. EN 12350-5:2011 Testing fresh concrete - Part 5: Flow table test, 2011.
- 18. H. Szulc, MSc Thesis: Właściwości betonów konstrukcyjnych modyfikowanych domieszką tlenku grafenu. The properties of structural concrete modified with admixture of graphene oxide (No: 719B-MSPBU/262458/1165514) - in Polish, Warsaw University of Technology, 2019.
- 19. EN 12390-3:2019-07 Testing hardened concrete - Part 3: Compressive strength of test specimens, 2019.
- 20. EN 12390-6:2011 Testing hardened concrete - Part 6: Tensile splitting strength of test specimens, 2011.
- 21. PN-EN 12390-5:2019-08 Badania betonu - Część 5: wytrzymałość na zginanie próbek do badań; Testing hardened concrete - Part 5: Flexural strength of test specimens, 2019.
- 22. W. Kubissa, R. Jaskulski, Sorpcyjność betonu w obciążonym elemencie konstrukcji. Sorptivity testing of existing concrete structures - in Polish, w: III Forum Bud. Płock, Płock, 2014. https://doi.org/10.13140/2.1.1576.4167.
- 23. Polish standard PN-88/B - 06250 Beton zwykły. Ordinary concrete - in Polish, b.d.
- 24. T. Torrent, R, Denarie´, E., Jacobs, F., Leemann, A., Teruzzi, Specification and site control of the permeability of the cover concrete: The Swiss approach, Mater. Corros. 63 (2012) 1127-1133.
- 25. W. Kubissa, M.A. Glinicki, M. Dąbrowski, Permeability testing of radiation shielding concrete manufactured at industrial scale, Mater. Struct. Constr. 51 (2018). https://doi.org/10.1617/s11527-018-1213-0.
- 26. EN 206+A1:2016-12 Concrete - Part 1: Specification, performance, production and conformity, 2016.
- 27. R. Jaskulski, P. Reiterman, W. Kubissa, Investigation of thermal properties of concrete with recycled aggregate and concrete with copper slag and supplementary cementing materials. in: Energy Effic. Sustain. Build. Mater. Prod. 2017: 283-302 (2017).
- 28. K. Prałat, J. Ciemnicka, A. Koper, K.E. Buczkowska, P. Łoś, Comparison of the Thermal Properties of Geopolymer and Modified Gypsum, Polymers (Basel). 13 (2021) 1220. https://doi.org/10.3390/polym13081220.
- 29. C. Lin, W. Wei, Y.H. Hu, Catalytic behavior of graphene oxide for cement hydration process, J. Phys. Chem. Solids. 89 (2016) 128-133. https://doi.org/10.1016/j.jpcs.2015.11.002.
- 30. W. Long, Uniformly Dispersed and Re-Agglomerated Graphene Oxide-Based Cement Pastes: A Comparison of Rheological Properties, Mechanical Properties and Microstructure. Nanomaterials 8 (2018) 31. https://doi.org/10.3390/nano8010031.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ee32003-89fc-4cfe-9466-176094ec4fa6