PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Can DIPPR Database be Used for an Estimation of the Speed of Sound? A Case Study of Liquid Hydrocarbons

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper analyses a possibility of utilising the information which is contained in DIPPR database for a calculation of the speed of sound, which is absent there. As an example, liquid hydrocarbons are considered: n-hexane, 1-hexene, cyclohexane, cyclohexene, benzene, and 1-hexanols, as well as representatives of n-alkanes with various hydrocarbon chain lengths. It is shown that the Brelvi-O’Connell correlation for the reduced bulk modulus, supplied with the correlations for the internal pressure at the normal boiling temperature, results in the values having accuracy comparable with other DIPPR data for the region below the boiling point bounded by the values of the reduced density around pr ≈ 3.5. The source of errors originated from the Brelvi-O’Connell correlation for larger reduced densities is discussed.
Rocznik
Strony
713--719
Opis fizyczny
Bibliogr. 25 poz., tab., wykr.
Twórcy
  • Theoretical Physics Department, Kursk State University, Radishcheva st. 33, Kursk 305000, Russia
Bibliografia
  • 1. Aspen Plus, http://www.aspentech.com/products/engineering/aspen-plus/.
  • 2. Bell I. H., Wronski J., Quoilin S., Lemort V. (2014), Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp, Industrial & Engineering Chemistry Research, 53, 2498–2508.
  • 3. Brelvi S. W., O’Connell J. P. (1972), Corresponding states correlations for liquid compressibility and partial molal volumes of gases at infinite dilution in liquids, AIChE Journal, 18, 1239–1243.
  • 4. Cerdeiriña C. A., Tovar C. A., González-Salgado D., Carballo E., Romani L. (2001), Isobaric thermal expansivity and thermophysical characterization of liquids and liquid mixtures, Physical Chemistry Chemical Physics, 3, 5230–5236.
  • 5. Chorążewski M., Postnikov E. B., Oster K., Polishuk I. (2015), Thermodynamic Properties of 1, 2-Dichloroethane and 1, 2-Dibromoethane under Elevated Pressures: Experimental Results and Predictions of a Novel DIPPR-Based Version of FT-EoS, PCSAFT, and CP-PC-SAFT, Industrial & Engineering Chemistry Research, 54, 9645–9656.
  • 6. Diamantonis N. I., Economou I. G. (2011), Evaluation of statistical associating fluid theory (SAFT) and perturbed chain-SAFT equations of state for the calculation of thermodynamic derivative properties of fluids related to carbon capture and sequestration, Energy & Fuels, 25, 3334–3343.
  • 7. DIPPR 801 Database, http://www.aiche.org/dippr/events-products/801-database.
  • 8. Khasanshin T. S, Poddubskii O. G., Shchemelev A. P. (2005), Sound Velocity in Liquid 1-Alkenes, High Temperature, 43, 530–537.
  • 9. Korotkovskii V. I., Lebedev A. V., Ryshkova O. S., Bolotnikov M. F., Shevchenko Y. E., Neruchev Y. A. (2012), Thermophysical properties of liquid squalane C30H62 within the temperature range of 298.15–413.15 K at atmospheric pressure, High Temperature, 50, 471–474.
  • 10. Lafitte T., Bessieres D., Piñeiro M. M., Daridon J. L. (2006). Simultaneous estimation of phase behawior and second-derivative properties using the statistical associating fluid theory with variable range approach Journal of Chemical Physics, 124, 024509.
  • 11. Laugier S. D., Richon D. (2003), Use of artificial neural networks for calculating derived thermodynamic quantities from volumetric property data /Fluid phase equilibria, 210, 247–255.
  • 12. Liang X., Maribo-Mogensen B., Thomsen K., Yan W., Kontogeorgis G. M. (2012), Approach to improve speed of sound calculation within PC-SAFT framework, Industrial & Engineering Chemistry Research, 51, 14903–14914.
  • 13. Marcus Y. (2013), Internal pressure of liquids and solutions, Chemical Reviews, 113, 6536–6551.
  • 14. Nash L. K. (1984), Trouton and T-H-E rule, Journal of Chemical Education, 61 981–984.
  • 15. Neruchev Y. A., Bolotnikov M. F., Zotov V. V. (2005), Investigation of ultrasonic velocity in organic liquids on the saturation curve, High temperature, 43, 266–309.
  • 16. Polishuk I. (2011), Hybridizing SAFT and cubic EOS: what can be achieved? Industrial & Engineering Chemistry Research, 50, 4183–4198.
  • 17. Polishuk I. (2014), Standardized critical point-based numerical solution of statistical association fluid theory parameters: the perturbed chain-statistical association fluid theory equation of state revisited, Industrial & Engineering Chemistry Research, 53, 14127–14141.
  • 18. Reddy K. R., Kumar D. B. K., Rao G. S., Anila P., Rambabu C. (2014), Densities, viscosities, sound speed, and IR studies of N-methyl-2-pyrrolidone with cyclohexylamine, cyclohexanol, and cyclohexene at different temperatures, Thermochimica Acta, 590, 116–126.
  • 19. Rowlinson J. S., Swinton F. L. (2013), Liquids and Liquid Mixtures, Butterworth-Heinemann.
  • 20. Sandler S. I. (2015), Using Aspen Plus in thermodynamics instruction: a step-by-step guide, John Wiley & Sons.
  • 21. Span R., Wagner W., Lemmon E. W., Jacobsen R. T. (2001), Multiparameter equations of staterecent trends and future challenges, Fluid Phase Equilibria, 183, 1–20.
  • 22. Srivastava S. C. (1959), Relationship between ultrasound velocity and other physical properties of pure organic liquids, Indian Journal of Physics, 33, 503–504.
  • 23. Zotov V. V., Kireev B. N., Neruchev Y. A. (1975), Study of the equilibrium properties of hydrocarbons on the saturation line by an acoustic method, Journal of Applied Mechanics and Technical Physics, 16, 282–284.
  • 24. Zotov V. V., Melikhov Y. F., Mel’nikov G. A., Neruchev Y. A. (1995), Sound Velocity in Liquid Hydrocarbons [in Russian], Kursk State Pedagog. Univ., Kursk.
  • 25. Zotov V. V., Neruchev Y. A., Otpushchennikov N. F. (1968), Speed of sound on the saturation line for some monohydric aliphatic alcohols, Russian Physics Journal, 11, 130–131.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ee24de7-4448-41f0-ae41-da962314a502
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.