PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laser cladding of Al-Si on Al-Cu sintered alloy to improve wear resistance

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: To improve the wear resistance of Al-Cu sintered parts by the use of a coating layer of hypereutectic Al-Si alloy deposited by laser cladding. Design/methodology/approach: Coaxial laser cladding was used to deposit a coating layer of hypereutectic Al-Si alloy on sintered Al-Cu alloy to improve its wear resistance. The laser cladding parameters were varied; firstly obtaining single laser cladding tracks and finally obtaining a larger area of coating by overlapping tracks. Findings: The Al-Si coating layer presented good metallurgical bonding with the sintered Al alloy and was composed mostly of eutectic Al-Si in the upper zone and alpha Al dendrites plus eutectic Al-Si in the lower zone. Laser also generates a melted layer in the base-sintered material, mainly composed of a columnar dendritic structure with copper segregated in the interdendritic region, which assured a gradual transition to the clad structure. Pin-on-disc tests showed that the wear resistance of the part was improved with the Al-Si coating. Practical implications: The wear resistance of sintered Al-Cu alloy was improved more than 70% using a coating layer of hypereutectic Al-Si alloy deposited by laser cladding. Originality/value: Single tracks and a continuous layer of Al-Si were successfully deposited by laser cladding on Al-Cu sintered parts. Pin-on-disk comparative tests showed an increase of more than 70% in wear resistance due to the Al-Si coating.
Rocznik
Strony
206--213
Opis fizyczny
Bibliogr. 23 poz., rys., wykr.
Twórcy
  • Universidade Estadual de Campinas, Rua Mendeleiev, 200, 13083-970, Campinas, Brazil
autor
  • Universitat Politècnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain
autor
  • Universitat Politècnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain
Bibliografia
  • [1] W.S. Miller, L. Zhuang, J. Bottema, A. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Recent development in aluminium alloys for the automotive industry, Materials Science and Engineering 280 A (2000) 37-49.
  • [2] J.B. Fogagnolo, E.M. Ruiz-Navas, M.A. Simon, M.A. Martinez, Recycling of aluminium alloy and aluminium matrix composite chips by pressing and hot extrusion, Journal of Materials Processing Technology 143 (2003) 792-795.
  • [3] S.K. Das, J.A.S. Green, J.G. Kaufman, The development of recycle-friendly automotive aluminum alloys, The Journal of The Minerals, Metals & Materials Society59 (2007) 47-51.
  • [4] A. Pohl, Wear resistant sintered aluminium parts for automotive applications, Powder Metallurgy 49 (2006) 104-106.
  • [5] D.P. Bishop, J.R. Cahoon, M.C. Chaturvedi, G.J. Kipouros, On enhancing the mechanical properties of aluminum P/M alloys, Materials Science and Engineering 290A (2000) 16-24.
  • [6] R.L. Deuis, C. Subramanian, J.M. Yellup, Abrasive wear of aluminium composites - A review, Wear 201 (1996)132-144.
  • [7] Y. Sahin, Wear behaviour of aluminium alloy and its composites reinforced by SiC particles using statistical analysis, Materials & Design 24 (2003) 95-103.
  • [8] A.M. Al-Qutub, A. Khalil, N. Saheb, A.S. Hakeem, Wear and friction behavior of Al6061 alloy reinforced with carbon nanotubes, Wear 297 (2013) 752-761.
  • [9] G.Y. Liang, T.T. Wong, J.M.K. MacAlpine, J.Y. Su, A study of wear resistance of plasma-sprayed and laser-remelted coatings on aluminium alloy, Surface & Coatings Technology 127 (2000) 233-238.
  • [10] M. Trevino, N.F. Garza-Montes-de-Oca, A. Perez, M.A.L. Hernandez-Rodriguez, A. Juarez, R. Colas, Wear of an aluminium alloy coated by plasma electrolytic oxidation. Surface & Coatings Technology 206 (2012) 2213-2219.
  • [11] R. Vilar, Laser cladding, Journal of Laser Applications 11 (1999) 64-79.
  • [12] M. Zhong, W. Liu, Laser surface cladding: the state of the art and challenges, Journal of Mechanical Engineering Science 224 (2010) 1041-1060.
  • [13] R. Anandkumar, A. Almeida, R. Vilar, Wear behavior of Al-12Si/TiB2 coatings produced by laser cladding, Surface & Coatings Technology, 205 (2011) 3824-3832.
  • [14] L. Dubourg, D. Ursescu, F. Hlawka, A. Cornet, Laser cladding of MMC coatings on aluminium substrate: influence of composition and micro structure on mechanical properties, Wear 258 (2005 1745-1754.
  • [15] R. Anandkumar, A. Almeida, R. Vila, Microstructure and sliding wear resistance of an Al-12 wt.% Si/TiC laser clad coating, Wear 282 (2012) 31-39.
  • [16] R. Anandkumar, A. Almeida, R. Colaco, R. Vilar V. Ocelik, J.T.M. De Hosson, Surface & Coatings Technology 201 (2007) 9497–9505.
  • [17] H. Torabian, J.P. Pathak, S.N. Tiwari, Characteristics of Al-Si Alloys, Wear 172 (1994) 49-58.
  • [18] M. Elmadagli, T. Perry, A.T. Alpas, A parametric study of the relationship between microstructure and wear resistance of Al-Si alloys, Wear 262 (2007) 79-92.
  • [19] D.A. Granger, R. Elliott, Solidification of Eutectic Alloys: Aluminum-Silicon Alloys. In: ASM Hand-book-Casting, ASM International, 1988.
  • [20] M. Pierantoni, M. Gremaud, P. Magnin, D. Stoll, W. Kurz, The Coupled Zone of Rapidly Solidified Al-Si Alloys in Laser Treatment, Acta Metallurgica et Materialia 40 (1992) 1637-1644.
  • [21] Y.T. Pei YT, J.T.M. De Hosson, Functionally graded materials produced by laser cladding, Acta Materialia 48 (2000) 2617-2624.
  • [22] P. Volovitch, J.E. Masse,A. Fabre, L. Barrallier, W. Saikaly, Microstructure and corrosion resistance of magnesium alloy ZE41 with laser surface cladding by Al-Si powder, Surface & Coatings Technology 202 (2008) 4901-4914.
  • [23] K.M. Jasim, E.S. Dwarakadasa, Wear in Al-Si Alloys under Dry Sliding Conditions, Wear 119 (1987) 119-130.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ee18882-9eef-4cf2-968b-ef84ed7c8ae3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.