PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The numerical analysis of the basic operating parameters of a low-NOx burner

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
More importance than ever before is attached to reducing harmful gas emissions from industry, both in Poland and worldwide. Rising prices of gas emissions allowances, stricter criteria for suitability for use and the desire to protect the environment are driving the search for new technological solutions and logistics to deliver cost savings and lower emissions. The creation of an appropriate numerical model can translate into real savings as well as having other benefits. This paper presents a numerical analysis of the basic operating parameters of a low-emission swirl burner. The analyzed burner is a typical example of a burner with air staging. The burner was placed in a cylindrical combustion chamber. In the first stage, a cold flow analysis without reaction was performed showing the velocity profile, flow vectors and the flow of coal particles. Then calculations were carried out taking into account combustion of coal dust particles in the chamber. The analysis of combustion products, temperatures prevailing in the chamber and the content of nitrogen oxides is presented.
Rocznik
Strony
59--67
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
Bibliografia
  • 1. Cho, C.H., Baek, G.M., Sohn, C.H., Cho, J.H., and Kim, H.S. (2013) A numerical approach to reduction of NOx emission from swirl premix burner in a gas turbine combustor. Applied Thermal Engineering, 59 (1-2), 454–463.
  • 2. Holkar, R. (2013) CFD Anlysis of Pulverised-Coal Combustion of Burner Used In Furnace with Different Radiation Models. IOSR Journal of Mechanical and Civil Engineering, 5 (2), 25–34.
  • 3. Dinesh, K.K.J.R., Luo, K.H., Kirkpatrick, M.P., and Malalasekera, W. (2013) Burning syngas in a high swirl burner: Effects of fuel composition. International Journal of Hydrogen Energy, 38 (21), 9028–9042.
  • 4. German, A., and Mahmud, T. (2005) Modelling of non-premixed swirl burner flows using a Reynoldsstress turbulence closure. Fuel, 84 (5), 583–594.
  • 5. Hübner, A.W., Tummers, M.J., Hanjalić, K., and Meer, T.H. van der (2003) Experiments on a rotatingpipe swirl burner. Experimental Thermal and Fluid Science, 27 (4), 481–489.
  • 6. Adamczyk, W.P., Werle, S., and Ryfa, A. (2014) Application of the computational method for predicting NOx reduction within large scale coal-fired boiler. Applied Thermal Engineering, 73 (1), 343–350.
  • 7. Li, Z., Zeng, L., Zhao, G., Shen, S., and Zhang, F. (2011) Particle sticking behavior near the throat of a low-NOx axial-swirl coal burner. Applied Energy, 88 (3), 650–658.
  • 8. Beckmann, A.M., Mancini, M., Weber, R., Seebold, S., and Müller, M. (2016) Measurements and CFD modeling of a pulverized coal flame with emphasis on ash deposition. Fuel, 167, 168–179.
  • 9. Jamaluddin, A.S., and Smith, P.J. (1988) Predicting Radiative Transfer in Axisymmetric Cylindrical Enclosures Using the Discrete Ordinates Method. Combustion Science and Technology, 62 (4-6), 173–186.
  • 10. Reis, L.C.B.S., Carvalho, J.A., Nascimento, M.A.R., Rodrigues, L.O., Dias, F.L.G., and Sobrinho, P.M. (2014) Numerical modeling of flow through an industrial burner orifice. Applied Thermal Engineering, 67 (1-2), 201–213.
  • 11. Giorgi, M.G.D., Ficarella, A., and Laforgia, D. (2006) Optimization of an industrial coal pulverized swirled burner by CFD modelling. 61 Congresso Nazionale ATI, Perugia, Italy.
  • 12. Kardaś, D., and Golec, S. (2005) Flow charateristics of a low NOx emission burner. Task Quarterly, 9 (1), 65–79.
  • 13. Kurose, R., Makino, H., and Suzuki, A. (2004) Numerical analysis of pulverized coal combustion characteristics using advanced low-NOx burner. Fuel, 83 (6), 693–703.
  • 14. Weber, R. (1996) Reaserch on low-emission combustion for industry furnaces. Low-emission technics, Ustroń-Zawodzie, Poland.
  • 15. Zeldvich, Y.B. (1946) The oxidation of nitrogen in combustion and explosions. J. Acta Physicochimica, 21, 577.
  • 16. Lavoie, G.A., Heywood, J.B., and Keck, J.C. (1970) Experimental and Theoretical Study of Nitric Oxide Formation in Internal Combustion Engines. Combustion Science and Technology, 1 (4), 313–326.
  • 17. Fenimore, C.P., and Jones, G.W. (1957) The Water-Catalyzed Oxidation of Carbon Monoxide by Oxygen at High Temperature. The Journal of Physical Chemistry, 61 (5), 651–654.
  • 18. Fenimore, C.P. (1971) Formation of nitric oxide in premixed hydrocarbon flames. Symposium (International) on Combustion, 13 (1), 373–380.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3edeb509-23ed-47e7-867c-f8acb507357d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.