PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis and optimisation of an axial flux permanent magnet coreless motor based on the field model using the superposition principle and genetic algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, methodologies for the magnetic field simulation in an axial flux permanent magnet coreless (AFPMC) motor have been proposed and discussed. Two approaches have been considered and investigated, both based on representing the 3D field distribution by superimposing axisymmetric 2D patterns. The first of studied approaches applies directly to the Biot-Savart law while the second uses a 2D axisymmetric finite element method. The selected results of magnetic field distributions and electromagnetic torque characteristics for the considered AFPMC motor have been presented and compared with results obtained using the commercial FEM package 'Maxwell'. The elaborated algorithms have been incorporated into the design routines allowing multi-parameter optimisation of the considered motor construction.
Rocznik
Strony
601--611
Opis fizyczny
Bibliogr. 12 poz., fig., tab., wz.
Twórcy
  • Institute of Electrical Engineering and Electronics Department of Mechatronics and Electrical Machines, Poznań University of Technology Piotrowo 3A, 60-965 Poznań, Poland
Bibliografia
  • [1] Lovatt H. C., Ramsden V. S., Mecrow B. C., Design of an in-wheel motor for a solar-powered electric vehicle, IEE Proceedings – Electric Power Applications 145(5): 402-408 (1998).
  • [2] Dong J., Huang Y., Shen P., Jin L., Ge B., An axial flux flywheel motor/generator for pulsed power application, Proc. IEEE Energy Conversion Congress and Exposition (ECCE 2012), Raleigh, NC, pp. 678-683 (2012).
  • [3] Bumby J. R., Martin R., Axial-flux permanent magnet air-cored generator for small scale wind turbines, IEE Proceedings – Electric Power Applications 152(5): 1065-1075 (2005).
  • [4] Gieras J., Wang R., Kamper M., Axial flux permanent magnet brushless machine, 2nd Edition, Springer (2008).
  • [5] Judge A., Permanent magnet axial field air core (PAAC) motors for naval applications, Proc. ASNE Elect. Mach. Technol. Symposium, Philadelphia, USA, pp. 46-53 (2012).
  • [6] http://www.katech.com/katfiles/sema.html, accessed December 2015.
  • [7] Boczkowski T., Demenko A., Wojciechowski R. M., Sykulski J. K., Applying superposition of 2D results to model 3D field distributions in magnetically linear devices using an example of an axial flux permanent magnet coreless motor, Proc. Compumag, Montreal, Canada, 2pp (2015).
  • [8] Demenko A., Stachowiak D., Representation of permanent magnets in the 3-D finite element description of electrical machines, Electromotion 14(1): 3-9 (2007).
  • [9] Smythe W. R., Static and dynamic electricity, 2nd ed., McGraw – Hill Book Company (1950).
  • [10] Budnik K., Machczyński W., Magnetic field of complex helical conductors, Archives of Electrical Engineering 62(4): 533-540 (2013).
  • [11] Demenko A., Łyskawiński W., Wojciechowski R. M., Equivalent formulas for global magnetic force calculation from finite element solution, IEEE Transactions on Magnetics 48(2): 195-198 (2012).
  • [12] Knypinski Ł., Nowak L., Optimization of the permanent magnet brushless DC motor employing finite element method, Compel 32(4): 1189-1202 (2013).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ed660fb-98c0-4d78-bfce-44169bc81c8a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.