PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strain measuring accuracy with splitting-beam laser extensometer technique at split Hopkinson compression bar experiment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An accuracy problem of strain measurement at compression split Hopkinson compression bar experiments with a splitting-beam laser extensometer was considered. The splitting-beam laser extensometer technique was developed by Nie et al. to measure strain of a specimen during its tension under a high strain rate loading condition. This novel concept was an inspiration for the authors to develop own laser extensometer system, which allows for simultaneous and independent measurement of displacement of bar ends between which a compressed material specimen is placed. In order to assess a metrological property of this measuring system, a wide range of high strain rate experiments were performed, including tests with various sample materials (Al 5251, Cu OFE) with different rate of strain, and with the use of two bars material. A high accuracy of the developed laser extensometer was found in measurement of specimen strain, for which uncertainty is not greater than 0.1% and, for a typical specimen dimension, the maximum permissible error is 4.5 μm.
Rocznik
Strony
163--169
Opis fizyczny
Bibliogr. 26 poz., rys., wykr., tab., fot.
Twórcy
autor
  • Military University of Technology, 2 Gen. Kaliskiego Str., 00-908 Warsaw, Poland
  • Military University of Technology, 2 Gen. Kaliskiego Str., 00-908 Warsaw, Poland
autor
  • Military University of Technology, 2 Gen. Kaliskiego Str., 00-908 Warsaw, Poland
Bibliografia
  • [1] W. Chen, B. Song B, Split Hopkinson (Kolsky) Bar: Design, Testing and Applications, Springer, Berlin, 2011.
  • [2] A. G. Bazle, J. W. Gillespie, “Numerical Hopkinson bar analysis: uni-axial stress and planar bar-specimen interface conditions by design”, Report MD 21005‒5069, ARL-CR-553, Army Research Laboratory, Aberdeen Proving Ground, 2004.
  • [3] K. Safa, G. Gary, “Displacement correction for punching at a dynamically loaded bar end”, Int. J. Impact Eng. 37, 371-384 (2010).
  • [4] T. Jankowiak, A. Rusinek, T. Łodygowski, “Validation of the Klepaczko-Malinowski model for friction correction and recommendations on split Hopkinson pressure bar”, Finite Elements in Analysis and Design 47 (10), 1191-1208 (2011).
  • [5] B. Song, K. Nelson, R. Lipinski, J. Bignell, G. Ulrich, E. P. George, “Dynamic high-temperature testing of an iridium alloy in compression at high-strain rates”, Strain 50 (6), 539-546 (2014).
  • [6] R. Panowicz, J. Janiszewski, “Tensile split Hopkinson bar technique: numerical analysis on the problem of wave disturbance and specimen geometry selection”, Metrology and Measurement Systems 23 (3), 425‒436 (2016).
  • [7] K. Xia, W. Yao, “Dynamic rock tests using split Hopkinson (Kolsky) bar system - a review”, Journal of Rock Mechanics and Geotechnical Engineering 7, 27-59 (2015).
  • [8] B. Song, B. R. Antoun, H. Jin, “Dynamic tensile characterization of a 4330-V steel with Kolsky bar techniques”, Experimental Mechanics 53, 1519-1529 (2013).
  • [9] X. Wu, D. A. Gorham, “Stress equilibrium in the split Hopkinson pressure bar test”, Journal de Physique IV Colloque 07 (C3), 91-96 (1997).
  • [10] D. A. Gorham, “Measurement of stress-strain properties of strong metals at very high strain rates”, Inst. Phys. Conf. Ser. 47, 16-24 (1980).
  • [11] D. A. Gorham, P. H. Pope, J. E. Field, “An improved method for compressive stress-strain measurements at very high strain rates”, Proc. R. Soc. Lond. A 438, 153-170 (1992).
  • [12] C. C. Roth, G. Gary, D. Mohr, “Compact SHPB system for intermediate and high strain rate plasticity and fracture testing of sheet metal”, Experimental Mechanics 55 (9), 1803-181 (2015).
  • [13] J. J. Chen, B. Q. Guo, H. B. Liu, H. Liu, P. W. Chen, “Dynamic Brazilian test of brittle materials using the split Hopkinson pressure bar and digital image correlation”, Strain 50, 563-570 (2014).
  • [14] L. Zhang, T. Wang, Z. Jiang,Q. Kemao, Y. Liu, Z. Liu, L. Tang, S. Dong, “High accuracy digital image correlation powered by GPU-based parallel computing”, Optics and Lasers in Engineering 69, 7‒12 (2015).
  • [15] H. Jin, C. Sciammarella, S. Yoshida, L. Lamberti, Advancement of Optical Methods in Experimental Mechanics, vol. 3, Springer, New York, 2014.
  • [16] W. N. Sharpe, K. G. Hoge, “Specimen strain measurement in the split-Hopkinson-pressure-bar experiment”, Experimental Mechanics 12 (12), 570-574 (1972).
  • [17] D. T. Casem, S. E. Grunschel, B. E. Schuster, “Normal and transverse displacement interferometers applied to small diameter Kolsky bars”, Experimental Mechanics 52, 173-184 (2012).
  • [18] D. T. Casem, S. E. Grunschel, B. E. Schuster, “Interferometric measurement techniques for small diameter Kolsky bars”, Proc. of the 2010 SEM Annual Conference and Exposition on Experimental and Applied Mechanics, 973-977, Indianapolis (2010).
  • [19] K. T. Ramesh, S. Narasimhan, “Finite deformations and the dynamic measurement of radial strains in compression Kolsky bar experiments”, Int. J. Solids Struct. 33 (25), 3723-3738 (1996).
  • [20] Y. Li, K. Ramesh, “An optical technique for measurement of material properties in the tension Kolsky bar”, Int. J. Impact Eng. 34, 784-798 (2007).
  • [21] X. Nie, B. Song, C. M. Loeffle, “A novel splitting-beam laser extensometer technique for Kolsky tension bar experiment”, J. Dynamic Behavior Mater. 1, 70-74 (2015).
  • [22] S. Ellwood, L. J. Griffiths, D. J. Parry, “Materials testing at high constant strain rates”, J. Phys. E: Sci. Instrum. 15: 280-282 (1982).
  • [23] C. E. Franz, P. S. Follansbee, W. J. Wright, “New experimental techniques with the split Hopkinson pressure bar”, The 8th International Conference on High Energy Rate Fabrication, Pressure Vessel and Piping Division, San Antonio (1984).
  • [24] B. Song, P. E. Wakeland, M. Furnish, “Dynamic tensile characterization of Vascomax maraging C250 and C300 alloys”, J. Dynamic Behavior Mater. 1, 153-161 (2015), doi:
  • [25] W. Moćko, “Analysis of the impact of the frequency range of the tensometer bridge and projectile geometry on the results of measurements by the split Hopkinson pressure bar method”, Metrology and Measurement Systems 20 (4), 555-564 (2013).
  • [26] PDA36A (-EC) Si Switchable Gain Detector, User Guide, Thor- Labs, www.thorlabs.com, accessed 11 June 2016.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ec8657f-b3d0-4766-8b10-dd8ed2bb2ccd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.