PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the interaction between the CuZn38Pb2 matrix and the Fe reinforcement phase during the production of the complex relief MMCs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper is relevant to the investigation of the interaction between the copper alloy metal matrix (CuZn38Pb2) and the reinforcement phase (Fe) during the production of “hybrid” complex relief MMCs. An innovative production method is used for the creation of composites that have been brought to the application of different space vacuum schemes for composite synthesis of vacuuming the space by using the notion of “capillary forming”. In this method, the metal matrix (copper alloy melt) was forcedly infil- trated in the space between the reinforcement phase (Fe) particles as opposed to the classical method to obtain MMCs, uses a mechanism of insertion of the reinforcement phase into the ready for use melt, followed by homogenization of the composite structure. In this paper is presented a cost-effective production processes for metal-matrix composites by using single blanks implementing conventional methods for mould production (in expendable cement mould). Studies were also carried out metallographic and X-ray diffraction phase analysis to clarify the phase composition and the ongoing diffusion processes due to the high temperature process of production of complex relief MMC. Microhardness of the composite phase was also measured.
Rocznik
Strony
315--319
Opis fizyczny
Bibliogr. 9 poz., rys.
Twórcy
autor
  • Technical University of Varna, Bulgaria
autor
  • Technical University of Varna, Bulgaria
autor
  • Technical University of Varna, Bulgaria
Bibliografia
  • 1. Koczak M.J., M.K. Premkumar. 1993. “Emerging technologies for the in-situ production of MMCs”. JOM 45 (1) : 44‒48.
  • 2. Gergely V, D.C. Curran, T.W. Clyne. 2003. “The FOAMCARP process: foaming of aluminum MMCs by the chalkaluminum reaction in precursors”. Composites Science and Technology 63 (16) : 2301‒2310.
  • 3. Spasova D. 2016. “Production of decorative cast metal matrix composites with a complex relief and a nonmetal reinforcement phase”. TEM Journal 5 (1) : 80‒84, DOI: 10.18421/TEM51-13.
  • 4. Spasova D. 2016. “Capillary casting of iron-based alloys”. Advances in Materials and Processing Technologies 2 (3) : 361‒366.
  • 5. Spasova D., R. Radev, N. Atanasov. 2015. “Investigate of the obtaining of the MMC with metal matrix Al and Fe reinforcement phase”. Machines, Technologies, Materials 9 (4) : 28‒30.
  • 6. Method for foundry moulds production, Radev R., D. Spasova, N. Atanasov, R. Ivanova, Bulgaria, 2010, Patent, BG 65955 B1.
  • 7. Starink M., P. Wang, I. Sinclair, P.J. Gregson. 1999. “Microstructure and strengthening of Al–Li–Cu–Mg alloys and MMCs: II. Modelling of yield strength”. Acta Materialia 47 (14) : 3855–3868.
  • 8. Beffort O., S. Long, C. Cayron, J. Kuebler, P.-A. Buffat. 2007. “Alloying effects on microstructure and mechanical properties of high volume fraction SiC-particle reinforced Al-MMCs made by squeeze casting infiltration”. Composites Science and Technology 67 (3‒4) : 737–745.
  • 9. Atanasov M., R. Radev. 2011. Investigating the possibilities for receiving MMC foundry composites with increased content of the reinforcements, 219–224. In Unitech’11, Gabrovo.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3eb8af19-f76b-4e0d-8b99-ae901e7e772d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.