Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the paper we present an application of the homotopy analysis method for solving the two-phase inverse Stefan problem. In the proposed approach a series is created, having elements which satisfy some differential equation following from the investigated problem. We reveal, in the paper, that if this series is convergent then its sum determines the solution of the original equation. A sufficient condition for this convergence is formulated. Moreover, the estimation of the error of the approximate solution, obtained by taking the partial sum of the considered series, is given. Additionally, we present an example illustrating an application of the described method.
Rocznik
Tom
Strony
583--590
Opis fizyczny
Bibliogr. 47 poz., rys., wykr.
Twórcy
autor
- Institute of Mathematics, Silesian University of Technology, 23 Kaszubska St., 44-100 Gliwice, Poland
autor
- Institute of Mathematics, Silesian University of Technology, 23 Kaszubska St., 44-100 Gliwice, Poland
autor
- Institute of Mathematics, Silesian University of Technology, 23 Kaszubska St., 44-100 Gliwice, Poland
autor
- Institute of Mathematics, Silesian University of Technology, 23 Kaszubska St., 44-100 Gliwice, Poland
Bibliografia
- [1] M.N. Özişik, Heat Conduction, Wiley & Sons, New York, 1980.
- [2] S.C. Gupta, The Classical Stefan Problem. Basic Concepts, Modelling and Analysis, Elsevier, Amsterdam, 2003.
- [3] J. Hristov, “An inverse Stefan problem relevant to boilover: heat balance integral solutions and analysis”, Thermal Science 11, 141–160 (2007).
- [4] K. Okamoto and B.Q. Li, “A regularization method for the inverse design of solidification processes with natural convection”, Int. J. Heat Mass Transfer 50, 4409–4423 (2007).
- [5] H.-S. Ren, “Application of the heat-balance integral to an inverse Stefan problem”, Int. J. Therm. Sci. 46, 118–127 (2007).
- [6] D. Słota, “Solving the inverse Stefan design problem using genetic algorithms”, Inverse Probl. Sci. Eng. 16, 829–846 (2008).
- [7] D. Słota, “Identification of the cooling condition in 2-D and 3-D continuous casting processes”, Numer. Heat Transfer B 55, 155–176 (2009).
- [8] B. Johansson, D. Lesnic, and T. Reeve, “A method of fundamental solutions for the one-dimensional inverse Stefan problem”, Appl. Math. Modelling 35, 4367–4378 (2011).
- [9] B. Johansson, D. Lesnic, and T. Reeve, “Numerical approximation of the one-dimensional inverse Cauchy-Stefan problem using a method of fundamental solutions”, Inverse Probl. Sci. Eng. 19, 659–677 (2011).
- [10] D. Słota, “Restoring boundary conditions in the solidification of pure metals”, Comput. & Structures 89, 48–54 (2011).
- [11] C.-S. Liu, “Solving two typical inverse Stefan problems by using the Lie-group shooting method”, Int. J. Heat Mass Transfer 54, 1941–1949 (2011).
- [12] M. Marois, M. Désilets, and M. Lacroi, “What is the most suitable fixed grid solidification method for handling time-varying inverse Stefan problems in high temperature industrial furnaces?”, Int. J. Heat Mass Transfer 55, 5471–5478 (2012).
- [13] E. Hetmaniok, I. Nowak, D. Słota, and A. Zielonka, “Determination of optimal parameters for the immune algorithm used for solving inverse heat conduction problems with and without a phase change”, Numer. Heat Transfer B 62, 462–478 (2012).
- [14] E. Hetmaniok, D. Słota, and A. Zielonka, “Experimental verification of immune recruitment mechanism and clonal selection algorithm applied for solving the inverse problems of pure metal solidification”, Int. Comm. Heat & Mass Transf. 47, 7–14 (2013).
- [15] B. Johansson, D. Lesnic, and T. Reeve, “A meshless method for an inverse two-phase one-dimensional linear Stefan problem”, Inverse Probl. Sci. Eng. 21, 17–33 (2013).
- [16] D. Słota, “The application of the homotopy perturbation method to one-phase inverse Stefan problem”, Int. Comm. Heat & Mass Transf. 37, 587–592 (2010).
- [17] D. Słota, “Homotopy perturbation method for solving the two-phase inverse Stefan problem”, Numer. Heat Transfer A 59, 755–768 (2011).
- [18] R. Grzymkowski and D. Słota, “One-phase inverse Stefan problems solved by Adomian decomposition method”, Comput. Math. Appl. 51, 33–40 (2006).
- [19] D. Słota, “Direct and inverse one-phase Stefan problem solved by variational iteration method”, Comput. Math. Appl. 54, 1139–1146 (2007).
- [20] S. Liao, “Homotopy analysis method: a new analytic method for nonlinear problems”, Appl. Math. Mech. – Engl. Ed. 19, 957–962 (1998).
- [21] S. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman and Hall – CRC Press, Boca Raton, 2003.
- [22] S. Liao, “On the homotopy analysis method for nonlinear problems”, Appl. Math. Comput. 147, 499–513 (2004).
- [23] S. Liao, Homotopy Analysis Method in Nonlinear Differential Equations, Springer Education Press, Berlin, 2012.
- [24] T. Fan and X. You, “Optimal homotopy analysis method for nonlinear differential equations in the boundary leyer”, Numer. Algor. 62, 337–354 (2013).
- [25] S. Liao, “An optimal homotopy-analysis approach for strongly nonlinear differential equations”, Commun. Nonlinear Sci. Numer. Simulat. 15, 2003–2015 (2010).
- [26] A. Shidfar, A. Babaei, A. Molabahrami, and M. Alinejadmofrad, “Approximate analytical solutions of the nonlinear reaction-diffusion-convection problems”, Math. Comput. Modelling 53, 261–268 (2011).
- [27] R.A. Van Gorder, “Control of error in the homotopy analysis of semi-linear elliptic boundary value problems”, Numer. Algor. 61, 613–629 (2012).
- [28] S. Abbasbandy, “Homotopy analysis method for heat radiation equations”, Int. Comm. Heat & Mass Transf. 34, 380–387 (2006).
- [29] D. Chauhan, R. Agrawal, and P. Rastogi, “Magnetohydrodynamic slip flow and heat transfer in a porous medium over a stretching cylinder: homotopy analysis method”, Numer. Heat Transfer A 62, 136–157 (2012).
- [30] E. Hetmaniok, M. Pleszczyński, D. Słota, and A. Zielonka, “Usage of the homotopy analysis method for determining the temperature in the casting-mould system”, Hutnik 81 (1), 50–54 (2014).
- [31] E. Hetmaniok, D. Słota, R. Wituła, and A. Zielonka, “Solution of the one-phase inverse Stefan problem by using the homotopy analysis method”, Appl. Math. Modelling (2015), (to be published).
- [32] O. Abdulaziz, A. Bataineh, and I. Hashim, “On convergence of homotopy analysis method and its modification for fractional modified KdV equations”, J. Appl. Math. Comput. 33, 61–81 (2010).
- [33] M. Zurigat, S. Momani, Z. Odibat, and A. Alawneh, “The homotopy analysis method for handling systems of fractional differential equations”, Appl. Math. Modelling 34, 24–35 (2010).
- [34] D.W. Brzeziński and P. Ostalczyk, “High-accuracy numerical integration methods for fractional order derivatives and integrals computations”, Bull. Pol. Ac.: Tech. 62 (4), 723–733 (2014).
- [35] W. Mitkowski and P. Skruch, “Fractional-order models of the supercapacitors in the form of RC ladder networks”, Bull. Pol. Ac.: Tech. 61 (3), 581–587 (2013).
- [36] M. Sowa, “A subinterval-based method for circuits with fractional order elements”, Bull. Pol. Ac.: Tech. 62 (3), 449–454 (2014).
- [37] S. Abbasbandy and E. Shivanian, “A new analytical technique to solve Fredholm’s integral equations”, Numer. Algor. 56, 27–43 (2011).
- [38] H. Vosughi, E. Shivanian, and S. Abbasbandy, “A new analytical technique to solve Volterra’s integral equations”, Math. Methods Appl. Sci. 34, 1243–1253 (2011).
- [39] E. Hetmaniok, D. Słota, T. Trawiński, and R. Wituła, “Usage of the homotopy analysis method for solving the nonlinear and linear integral equations of the second kind”, Numer. Algor. 67 (2014), 163–185.
- [40] M. Araghi and S. Behzadi, “Numerical solution of nonlinear Volterra-Fredholm integro-differential equations using homotopy analysis method”, J. Appl. Math. Comput. 37, 1–12 (2011).
- [41] M. Ghoreishi, A. Ismail, and A. Alomari, “Comparison between homotopy analysis method and optimal homotopy asymptotic method for nth-order integro-differential equation”, Math. Methods Appl. Sci. 34, 1833–1842 (2011).
- [42] E. Hetmaniok, D. Słota, T. Trawiński, and R. Wituła, “An analytical technique for solving general linear integral equations of the second kind and its application in analysis of flash lamp control circuit”, Bull. Pol. Ac.: Tech. 62 (3), 413–421 (2014).
- [43] Z. Odibat, “A study on the convergence of homotopy analysis method”, Appl. Math. Comput. 217, 782–789 (2010).
- [44] M. Turkyilmazoglu, “Convergence of the homotopy analysis method”, arXiv 1006.4460v1, 1–12 (2010).
- [45] M. Turkyilmazoglu, “Some issues on HPM and HAM: a convergence scheme”, Math. Comput. Modelling 53, 1929–1936 (2011).
- [46] K. Yabushita, M. Yamashita, and K. Tsuboi, “An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method”, J. Phys. A: Math. Theor. 40, 8403–8416 (2007).
- [47] F. Akyildiz and K. Vajravelu, “Magnetohydrodynamic flow of a viscoelastic fluid”, Phys. Lett. A 372, 3380–3384 (2008).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3eb44c6f-9043-4588-a694-9e575ad325d8