
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. 63, No. 3, 2015

DOI: 10.1515/bpasts-2015-0068

An analytical method for solving

the two-phase inverse Stefan problem
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Abstract. In the paper we present an application of the homotopy analysis method for solving the two-phase inverse Stefan problem. In the

proposed approach a series is created, having elements which satisfy some differential equation following from the investigated problem.

We reveal, in the paper, that if this series is convergent then its sum determines the solution of the original equation. A sufficient condition

for this convergence is formulated. Moreover, the estimation of the error of the approximate solution, obtained by taking the partial sum of

the considered series, is given. Additionally, we present an example illustrating an application of the described method.
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1. Introduction

Solidification of pure metals is customarily modeled by means

of the Stefan problem [1, 2]. This problem consists in simul-

taneous determination of the temperature distribution in the

investigated region and of the location of the interface divid-

ing the region into two subregions taken by the liquid phase

and solid phase. In the inverse Stefan problem one usual-

ly assumes that the additional information, compensating the

lack of input data, is given by the knowledge of the location

of the interface, its velocity in the normal direction or tem-

perature at selected points of the region. Solving the inverse

problem, discussed in this paper, lies in determination of the

temperature distribution in considered region, as well as in

determination of the temperature and the heat flux on one of

boundaries of the region. Supplementary information of this

inverse problem is given by the location of interface, therefore

the considered problem is called the design problem.

It is possible to find an exact analytical solution of the

inverse Stefan problem only in few simple cases. Therefore

for solving problems of that type the numerical methods of

different kinds are the most often used [3–15]. Application

of analytical or analytic-numerical methods is rather insignif-

icant. In particular, in papers [16, 17] an application of the

homotopy perturbation method for solving the one- and two-

phase inverse Stefan problem is presented. Whereas, the use

of the Adomian decomposition method and variational iter-

ation method for solving the same problem is discussed in

papers [18, 19].

The homotopy analysis method has been developed in the

90’s, its author is Shijun Liao [20–23] and it belongs to the

group of analytical methods. This method has found an appli-

cation for solving many problems formulated with the aid of

ordinary and partial differential equations [24–27], including

the heat conduction problems [28–31], fractional differential

equations [32,33] (for some other applications of the fractional

calculus see for example [34–36]), integral equations [37–39],

integro-differential equations [40, 41] and others. A particu-

lar case of the homotopy analysis method is the homotopy

perturbation method [16, 17, 42].

By using the considered method we create a series, el-

ements of which fulfill some differential equation resulting

from the investigated problem. Obtained equation is easier

to solve in comparison with the original one. We reveal in

the paper that if this series is convergent then its sum deter-

mines the solution of discussed equation. Sufficient condition

of this convergence is formulated in this paper as well as the

estimation of error of approximate solution received by taking

only the partial sum of considered series. We also give some

example illustrating the application of described approach.

2. Statement of the problem

Let us consider two regions: D1 denoting the region taken by

the liquid phase and D2 describing the region taken by the

solid phase (see Fig. 1):

D1 = {(x, t); x ∈ [0, ξ(t)], t ∈ [0, t∗]},

D2 = {(x, t); x ∈ [ξ(t), d], t ∈ [0, t∗]}

and their boundaries:

Γ1 = {(x, 0); x ∈ (0, s), s = ξ(0)},

Γ2 = {(x, 0); x ∈ (s, d), s = ξ(0)},

Γ3 = {(0, t); t ∈ [0, t∗]},

Γ4 = {(d, t); t ∈ [0, t∗]},

Γ5 = {(x, t); t ∈ [0, t∗], x = ξ(t)},

where function x = ξ(t) defines the location of interface.
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Fig. 1. Domain of the problem

The two-phase Stefan problem [1,2] consists in determin-

ing the location of a moving interface described by means of

function x = ξ(t) and in determining functions u1 and u2,

defined in domains D1 and D2, respectively, which fulfill the

heat conduction equations (k = 1, 2):

∂uk(x, t)

∂t
= ak

∂2uk(x, t)

∂x2
in Dk, (1)

where ak denotes the thermal diffusivity in liquid phase

(k = 1) and solid phase (k = 2), whereas t and x refer to

the time and spatial location, respectively. On boundaries Γ1

and Γ2 the sought functions fulfill the initial conditions

u1(x, 0) = ϕ1(x) on Γ1, (2)

u2(x, 0) = ϕ2(x) on Γ2, (3)

ξ(0) = s. (4)

On boundary Γ3 function u1 satisfies the Dirichlet boundary

condition

u1(0, t) = θ1(t). (5)

Next, on boundary Γ4 function u2 fulfills the Dirichlet or

Neumann boundary conditions

u2(d, t) = θ(t), (6)

−λ2
∂u2(d, t)

∂x
= q(t), (7)

where λk denotes the thermal conductivity in liquid phase

(k = 1) and solid phase (k = 2). Finally, on the moving in-

terface (Γ5) the sought functions fulfil the condition of tem-

perature continuity and the Stefan condition

u1(ξ(t), t) = u2(ξ(t), t) = u∗, (8)

κ
dξ(t)

dt
= λ2

∂u2(x, t)

∂x

∣∣∣
x=ξ(t)

− λ1
∂u1(x, t)

∂x

∣∣∣
x=ξ(t)

, (9)

where u∗ is the phase change temperature and κ denotes the

latent heat of fusion per unit volume.

Solving of the discussed inverse Stefan problem lies in

finding the functions u1 and u2 describing the temperature

distribution in domains D1 and D2 as well as the functions

θ and q defining the temperature and the heat flux, respec-

tively, on boundary Γ4 such that they will satisfy Eqs. (1)

with conditions (2)–(9). All the other functions (ϕk, θ1, ξ)

and parameters (ak, λk, κ, u∗, s) are known.

3. Homotopy analysis method

For solving the investigated problem we intend to apply the

homotopy analysis method. By using this method we are able

to solve the operator equation

N(v(z)) = 0, z ∈ Ω, (10)

where N denotes the operator (in particular it can be the non-

linear operator), whereas v describes the unknown function.

At the beginning we need to determine the operator H in the

form

H(Φ, p) ≡ (1 − p)L (Φ(z; p) − v0(z)) − phN (Φ(z; p)) ,
(11)

where p ∈ [0, 1] is the embedding parameter, h 6= 0 denotes

the convergence control parameter, v0 describes the initial ap-

proximation of solution of problem (10) and L is the auxiliary

linear operator with property L(0) = 0.

By considering equation H(Φ, p) = 0 we obtain the so

called zero-order deformation equation

(1 − p)L
(
Φ(z; p) − v0(z)

)
= phN

(
Φ(z; p)

)
. (12)

For p = 0 we have L(Φ(z; 0) − u0(z)) = 0, from which

we get Φ(z; 0) = v0(z). Next, since for p = 1 we have

N(Φ(z; 1)) = 0, therefore Φ(z; 1) = v(z), where v is the

sought solution of Eq. (10). In this way the change of pa-

rameter p from zero to one corresponds with the change of

problem from the trivial form to the originally given form

(which means the change of solution from v0 to v).

On the way of expanding the function Φ into the Maclau-

rin series with respect to the parameter p we receive

Φ(z; p) = Φ(z; 0) +
∞∑

m=1

1

m!

∂mΦ(z; p)

∂pm

∣∣∣
p=0

pm. (13)

Introducing the notation

vm(z) =
1

m!

∂mΦ(z; p)

∂pm

∣∣∣
p=0

, m = 1, 2, 3, . . . , (14)

the previous relation can be described in the following way

Φ(z; p) = v0(z) +

∞∑

m=1

vm(z)pm. (15)

If the above series is convergent in the appropriate region,

then for p = 1 we obtain the desired solution

v(z) =

∞∑

m=0

vm(z). (16)

In order to determine the function vm we differentiate m
times the left and the right side of the relation (12) with re-

spect to parameter p. Obtained result is divided by m! and

next, by substituting p = 0, we get the so called mth-order

deformation equation (m > 0):

L
(
vm(z) − χmvm−1(z)

)
= hRm

(
vm−1, z

)
, (17)

where vm−1 = {v0(z), v1(z), . . . , vm−1(z)},

χm =

{
0 m ≤ 1,

1 m > 1
(18)
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and

Rm(vm−1, z) =
1

(m − 1)!

(
∂m−1

∂pm−1
N

(
∞∑

i=0

vi(z)pi

))∣∣∣∣
p=0

.

(19)

If we are not able to determine the sum of series in (16),

then as the approximate solution of considered equation we

can accept the partial sum of this series

v̂n(z) =

n∑

m=0

vm(z). (20)

By selecting properly the convergence control parame-

ter h we can influence the region of convergence of the

series in (15) as well as the rapidness of this conver-

gence [23, 43–45]. One of the methods enabling to choose

the value of convergence control parameter is the so called

“optimization method” [23, 46, 47]. In this method we define

the squared residual of the governing equation

En(h) =

∫

Ω

(
N
[
v̂n(z)

])2
dz. (21)

The optimal value of the convergence control parameter is

determined by minimizing the above squared residual. The

effective region of the convergence control parameter is de-

fined in the following way

Rh =
{
h : lim

n→∞

En(h) = 0
}
. (22)

If we take the value of convergence control parameter differ-

ent than the optimal value but still belonging to the effective

region, we obtain the convergent series as well, however rapid-

ness of this convergence will be smaller.

Another way for determining the value of convergence

control parameter is the so-called h-curve which is obtained

by investigating the behavior of a certain quantity of the solu-

tion as a function of parameter h [21,45]. This method enables

to determine the effective region of the convergence control

parameter, whereas it makes no possibility to calculate the

value ensuring the fastest convergence [23].

4. Solution of the problem

Let us proceed now to the application of the homotopy analy-

sis method for solving the above formulated two-phase inverse

Stefan problem. In this case the operators Nk and Lk, for

k = 1, 2, can be defined as follows

Nk(v) =
∂v

∂t
− ak

∂2v

∂x2
(23)

and

Lk(v) =
∂2v

∂x2
. (24)

For the investigated problem we have (under assumption that

the series is convergent) for k = 1, 2:

Rk,m

(
uk,m−1, x, t

)

=
1

(m − 1)!

(
∂m−1

∂pm−1
Nk

(
+∞∑

i=0

uk,i(x, t) pi

)) ∣∣∣∣
p=0

=
1

(m − 1)!
Nk

·

(
(m−1)!uk,m−1(x, t)+

+∞∑

i=m

uk,i(x, t)wk(i)pi−m+1

)∣∣∣∣
p=0

= Nk(uk,m−1(x, t)),
(25)

for m = 1, 2, . . ., where wk(i) ∈ N for i = m, m + 1, . . ..
In this way for m = 1 we get the system of two partial

differential equations (k = 1, 2):

∂2uk,1(x, t)

∂x2
= h

(
∂uk,0(x, t)

∂t
− ak

∂2uk,0(x, t)

∂x2

)
, (26)

whereas for m ≥ 2 we receive the following systems (k =
1, 2):

∂2uk,m(x, t)

∂x2
=

∂2uk,m−1(x, t)

∂x2

+ h

(
∂uk,m−1(x, t)

∂t
− ak

∂2uk,m−1(x, t)

∂x2

)
.

(27)

For uniqueness of solution the above systems of partial differ-

ential equations suppose to be completed by additional con-

ditions. For this purpose we use conditions (5), (8) and (9).

Thus, the first of above systems is completed by conditions

of the form

u1,0(0, t) + u1,1(0, t) = θ1(t), (28)

u1,0(ξ(t), t) + u1,1(ξ(t), t) = u∗, (29)

u2,0(ξ(t), t) + u2,1(ξ(t), t) = u∗, (30)

−λ1
∂(u1,0 + u1,1)(ξ(t), t)

∂x

+ λ2
∂(u2,0 + u2,1)(ξ(t), t)

∂x
= κ

dξ(t)

dt
,

(31)

whereas for the remaining systems (m ≥ 2) we define the

following conditions

u1,m(0, t) = 0, (32)

u1,m(ξ(t), t) = 0, (33)

u2,m(ξ(t), t) = 0, (34)

−λ1
∂u1,m(ξ(t), t)

∂x
+ λ2

∂u2,m(ξ(t), t)

∂x
= 0. (35)

The above conditions ensure that any approximate solu-

tion (20) satisfies the assumed boundary conditions. As the

initial approximation we can take the functions defining the

initial conditions (k = 1, 2):

uk,0(x, t) = ϕk(x). (36)
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Thus the problem has been reduced to the sequence of

systems of differential Eqs. (26) and (27) with conditions

(28)–(31) and (32)–(35), respectively. The obtained systems of

equations are easier to solve in comparison with the original

system of partial differential equations.

Now we proceed to present the theorem ensuring that the

sums of determined series represent the solutions of consid-

ered equations.

Theorem 1. Let functions uk,m, k = 1, 2, m ≥ 1, be deter-

mined from the systems of Eqs. (26) and (27) with conditions

(28)–(31) and (32)–(35), respectively. If the series
∞∑

m=0
uk,m,

for k = 1, 2, are convergent then their sums designate the

solutions of considered equations.

Proof. Let the series
∑

∞

m=0 uk,m, for k = 1, 2, be convergent

and let

sk(x, t) =
∞∑

m=0

uk,m(x, t).

From the necessary condition for the series convergence we

get that for any x ∈ [a, b] and t ∈ [0, t∗]:

lim
m→∞

uk,m(x, t) = 0, k = 1, 2.

According to the method we have (for k = 1, 2):

Lk

(
uk,m(x, t) − χm uk,m−1(x, t)

)

= hRk,m

(
uk,m−1, x, t

)
,

which implies

h
∞∑

m=1

Rk,m

(
uk,m−1, x, t

)

= lim
n→∞

n∑

m=1

Lk

(
uk,m(x, t) − χmuk,m−1(x, t)

)

= lim
n→∞

Lk

(
n∑

m=1

(
uk,m(x, t) − χmuk,m−1(x, t)

)
)

= lim
n→∞

Lk

(
uk,n(x, t)

)

= Lk

(
lim

n→∞

uk,n(x, t)
)

= Lk(0) = 0,

where we have used the continuity of operator Lk. Since

h 6= 0, therefore for k = 1, 2, we have

∞∑

m=1

Rk,m

(
uk,m−1, x, t

)
= 0.

Next, by using relation (25) we get

0 =

∞∑

m=1

Rk,m (uk,m−1, x, t) =

∞∑

m=1

Nk(uk,m−1(x, t))

= Nk

(
∞∑

m=1

uk,m−1(x, t)

)
= Nk(sk(x, t)).

The following theorem describes the sufficient condition

for convergence of series
∑

∞

m=0 uk,m for k = 1, 2.

Theorem 2. Let functions uk,m, k = 1, 2, m ≥ 1, be deter-

mined from the systems of Eqs. (26) and (27) with conditions

(28)–(31) and (32)–(35), respectively. If parameter h is se-

lected in such a way that there exist the constants γh ∈ (0, 1)
and m0 ∈ N such that for each m ≥ m0 and k = 1, 2 the

following inequality

‖uk,m+1‖ ≤ γh‖uk,m‖ (37)

is satisfied, then the series
∑

∞

m=0 uk,m are uniformly conver-

gent.

Proof. Let Sk,n, for k = 1, 2, denotes the partial sums of

considered series

Sk,n(x, t) =

n∑

m=0

uk,m(x, t).

We intend to show that for any x ∈ [a, b] and t ∈ [0, t∗] the

sequences {Sk,n(x, t)} are the Cauchy sequences. For this

purpose let us begin by estimating the following norm (for

k = 1, 2):

‖Sk,n(x, t) − Sk,n−1(x, t)‖

= ‖uk,n(x, t)‖ ≤ γh‖uk,n−1‖ ≤ . . . ≤ γn−m0

h ‖uk,m0
‖

if only n ≥ m0. Now for any n, m ∈ N, n ≥ m ≥ m0, and

k = 1, 2, we have

‖Sk,n(x, t) − Sk,m(x, t)‖ ≤ ‖Sk,n(x, t) − Sk,n−1(x, t)‖ + . . .

+‖Sk,m+1(x, t) − Sk,m(x, t)‖

≤ γn−m0

h ‖uk,m0
‖ + . . . + γm+1−m0

h ‖uk,m0
‖

= γm+1−m0

h

(
γn−m−1

h + . . . + γh + 1
)
‖uk,m0

‖

= γm+1−m0

h

1 − γn−m
h

1 − γh

‖uk,m0
‖.

Since γh ∈ (0, 1), therefore we deduce that sequences

{Sk,n(x, t)} are the Cauchy sequences. Using the complete-

ness of space R we conclude that these sequences are conver-

gent, which implies the convergence of discussed series.

In the last theorem we give the estimation of error of ap-

proximate solution obtained by taking the partial sums of the

series.

Theorem 3. If assumptions of Theorem 2 are satisfied and

additionally n ∈ N and n ≥ m0, then for k = 1, 2 we get the

following estimation of error of approximate solution

‖uk − ûk,n‖ ≤
γn+1−m0

h

1 − γh

‖uk,m0
‖. (38)

Proof. Let n ∈ N and n ≥ m0. Then for every x ∈ [a, b] and

t ∈ [0, t∗] we get

‖uk(x, t) − ûk,n(x, t)‖ =
∥∥∥

∞∑

m=n+1

uk,m(x, t)
∥∥∥

≤

∞∑

m=n+1

∥∥uk,m(x, t)
∥∥ ≤

∞∑

m=n+1

γm−m0

h ‖uk,m0
‖

=
γn+1−m0

h

1 − γh

‖uk,m0
‖.

586 Bull. Pol. Ac.: Tech. 63(3) 2015

Unauthenticated
Download Date | 9/28/15 11:46 AM



An analytical method for solving the two-phase inverse Stefan problem

5. Example

The theoretical considerations introduced in the previous sec-

tions will be illustrated now with example. In the discussed

example we take the following values of parameters: s = 3/2,

d = 3, a1 = 5/2, a2 = 5/4, λ1 = 6, λ2 = 2, κ = 8/10,

t∗ = 1. Location of the interface is described with the aid of

function ξ(t) = (t+3)/2. Initial and boundary conditions are

defined by means of functions

ϕ1(x) = exp

(
3 − 2 x

10

)
,

ϕ2(x) = exp

(
3 − 2 x

5

)
,

θ1(t) = exp

(
t + 3

10

)
.

For such initial data the exact solution of the problem is given

by functions

u1,e(x, t) = exp

(
t − 2 x + 3

10

)
,

u2,e(x, t) = exp

(
t − 2 x + 3

5

)
.

As the initial approximations we take

u1,0(x, t) = exp

(
3 − 2 x

10

)
,

u2,0(x, t) = exp

(
3 − 2 x

5

)
.

In our case we can calculate the squared residual (21)

for each of equations (1). In this way we obtain the vector

En(h) = [E1,n(h), E2,n(h)]. Therefore it is natural to deter-

mine the optimal value of the convergence control parameter

h as the element for which we get the minimal value of the

norm of squared residual En:

hopt := argmin ‖En(h)‖.

In the considered case the numerically computed optimal val-

ue of the convergence control parameter is equal to 0.4053849
(h = 0.4053849). Logarithm of the norm of squared resid-

ual E3 is displayed in Fig. 2. Whereas, Fig. 3 presents the

h-curves of ux(ξ(0), 0) and vx(ξ(0), 0). On the basis of this

plot we conclude that as the effective region of the conver-

gence control parameter we can take the interval (0, 0.6). The

same interval we receive for the other h-curves.

Fig. 2. Logarithm of the norm of squared residual

Fig. 3. The h-curves

In the example we were not able to find the sums of ob-

tained series, therefore we present in Table 1 the absolute

errors (∆) and the relative percentage errors (δ) of approxi-

mating the exact solutions uk,e by functions ûk,n for k = 1, 2.

The errors of reconstruction of the temperature distribution θ
and the heat flux q are collected in Table 2. As indicated by

the example, if we have properly selected value of the conver-

gence control parameter h then, if it is impossible to predict

a general form of function uk,m or calculate the sum of series

in (16), it is sufficient to make use of the sum of several first

functions uk,m to provide a very good approximation of the

sought solution. As revealed by the obtained results, together

with an increase of the number of components in sum (20) the

errors quickly decrease. In the presented example calculation

of ten components ensures the absolute error at the level of

10−6 and the relative error at the level of 10−4% in case of

the temperature and, respectively, 10−5 and 10−3% in case

of the heat flux.

A plot of the reconstruction of initial conditions is dis-

played in Fig. 4. Next, Fig. 5 shows the plots of reconstruction

errors for the missing boundary conditions (temperature θ and

heat flux q). With regard to taken conditions (28)–(31) and

(32)–(35) for systems of equations (26) and (27), the remain-

ing conditions of the original problem are fulfilled exactly by

each approximate solution.
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Table 1

Errors of reconstruction of the temperature distributions (∆ – absolute

error, δ – percentage relative error)

n ∆bu1,n δbu1,n [%] ∆bu2,n δbu2,n [%]

1 1.40741 · 10−2 1.16758 0.11313 14.25655

2 1.60406 · 10−3 0.13307 7.36977 · 10−3 0.92875

3 2.32495 · 10−4 1.92876 · 10−2 4.52834 · 10−3 0.57067

4 4.26256 · 10−5 3.53619 · 10−3 8.66183 · 10−4 0.10916

5 9.62538 · 10−6 7.98515 · 10−4 5.22107 · 10−4 6.57969 · 10−2

6 2.59488 · 10−6 2.15269 · 10−4 1.78633 · 10−4 2.25116 · 10−2

7 8.13814 · 10−7 6.75134 · 10−5 8.12032 · 10−5 1.02334 · 10−2

8 2.91079 · 10−7 2.41477 · 10−5 3.01164 · 10−5 3.79533 · 10−3

9 1.16923 · 10−7 9.69984 · 10−6 1.29549 · 10−5 1.63260 · 10−3

10 5.21075 · 10−8 4.32280 · 10−6 4.82479 · 10−6 6.08029 · 10−4

Table 2

Errors of reconstruction of the boundary conditions (∆ – absolute error, δ –

percentage relative error)

n ∆bθn δbθn [%] ∆bqn δbqn [%]

1 0.20774 34.13608 0.41319 84.87152

2 1.10863 · 10−2 1.82175 1.18744 · 10−2 2.43906

3 8.54057 · 10−3 1.40342 1.67003 · 10−2 3.43034

4 1.64159 · 10−3 0.26975 2.95667 · 10−3 0.60731

5 9.15306 · 10−4 0.15041 1.14107 · 10−3 0.23438

6 2.87311 · 10−4 4.72122 · 10−2 1.73445 · 10−4 3.56265 · 10−2

7 1.19841 · 10−4 1.96929 · 10−2 9.30739 · 10−5 1.91179 · 10−2

8 3.76351 · 10−5 6.18435 · 10−3 8.17854 · 10−5 1.67992 · 10−2

9 1.39789 · 10−5 2.29707 · 10−3 5.44008 · 10−5 1.11742 · 10−2

10 3.62801 · 10−6 5.96170 · 10−4 3.23537 · 10−5 6.64562 · 10−3

a)

b)

Fig. 4. Error of the 10-th order approximation of the initial conditions

a)

b)

Fig. 5. Error of the 10-th order approximation of the boundary con-

ditions

The calculations have been also executed for the perturbed

input data. We have burdened the input data by the 0.5, 1.0

and 2.0% random error. In Table 3 we present the absolute and

relative errors of reconstructing the temperature and the heat

flux for various perturbations of input data and for the fifth-

order approximate solution. Next, in Figs. 6 and 7 there are

displayed the absolute errors of reconstruction of the bound-

ary conditions in case of input data burdened by 1 and 2%

error, obtained for the fifth-order approximate solution. On

the basis of received results one can conclude that the investi-

gated method is stable with regard to the errors of input data.

Each time when the input data were burdened with errors,

the error of the boundary conditions reconstruction did not

exceed the error of the input data.

Table 3

Errors of the reconstructed boundary conditions for the burdened input data

(n = 5, ∆ – absolute error, δ – percentage relative error)

Error ∆bθ5 δbθ5 [%] ∆bq5 δbq5 [%]

0.5% 1.26959 · 10−3 0.20862 1.15961 · 10−3 0.23819

1.0% 1.85554 · 10−3 0.30491 2.63330 · 10−3 0.54089

2.0% 4.57154 · 10−3 0.79170 7.90250 · 10−3 1.62322
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a)

b)

Fig. 6. Errors of reconstruction of the temperature (a) and the heat

flux (b) on boundary Γ4 for the input data burdened by 1% error

(result obtained for the fifth-order approximate solution, n = 5)

a)

b)

Fig. 7. Errors of reconstruction of the temperature (a) and the heat

flux (b) on boundary Γ4 for the input data burdened by 2% error

(result obtained for the fifth-order approximate solution, n = 5)

6. Conclusions

In the paper we have presented the application of the homo-

topy analysis method for solving the two-phase inverse Ste-

fan problem. A concept of the investigated method consists

in creation of a series, terms of which satisfy the differen-

tial equation resulting from the considered task and easier

to solve in comparison with the original equation. We have

proven in the paper that if this series is convergent then its

sum determines the solution of the considered equation. We

have formulated the sufficient condition for this convergence

and we have estimated the error of approximate solution ob-

tained by taking only the partial sum of the discussed series.

The received series are usually fast convergent, therefore the

use of only several terms ensures very good approximation

of the exact solution. Presented exemplary calculations show

that this method is effective for solving the problems under

consideration. Additionally, the method appears to be stable

with regard to the input data errors. In each considered case

the errors of reconstruction of the missing boundary condi-

tions were smaller than the perturbations of input data. An

advantage of the approach is the fact that discretization of the

region is not required like it is happening in classical methods,

for example in the finite difference method or finite element

method. Another advantage is that the solution is obtained in

the form of the continuous function which can be used for the

further analysis.

REFERENCES
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