PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The mathematical model of the mean flow stress for MgAl3Zn1Mn magnesium alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The presented paper deals with method for determination of mean flow stress (MFS) which contributes to better knowledge of forming processes of hot formed magnesium alloys. Design/methodology/approach: An experiment leading to obtaining the model of the mean flow stress (MFS) of magnesium alloy AZ31 was realized in laboratory rolling mill. It resulted from mathematical and statistical processing of MFS values that these could be described by a simple function of just two independent variables – temperature (200 to 450°C) and equivalent height strain (approx. 0.2 to 0.7). The methods of the light microscopy for metallographic analyses were used. Findings: The increasing strain resulted in decreasing deformation resistance. The effect of equivalent strain rate (approx. 10-80 1/s) was negligible. The model describes the given relationship with good accuracy; a relative error of calculated MFS values does not exceed ±10%. Research limitations/implications: In future work an important relation between the MFS, the Zener-Hollomon parameter and the grain size will be determined. A significant influence of the deformation temperature on the average grain size after recrystallization was identified, while observing lower sensitivity of this parameter to an increased strain rate. Practical implications: The results of structural studies along with the devised thermomechanical model will be used to design the foundations of rolling technology for this group of alloys. The results of this paper are determined for research workers deal by development new exploitations of magnesium alloys. Originality/value: These results describe complex evaluation of properties magnesium alloys namely for determination of the values of mean flow stress (MFS) which contributes to better knowledge of forming processes of hot formed magnesium alloys and explain the structure developed used magnesium alloys after forming.
Rocznik
Strony
5--12
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • VŠB-Technical University of Ostrava, 17.listopadu 15, 708 33 Ostrava, Czech Republic
autor
  • VŠB-Technical University of Ostrava, 17.listopadu 15, 708 33 Ostrava, Czech Republic
autor
  • VŠB-Technical University of Ostrava, 17.listopadu 15, 708 33 Ostrava, Czech Republic
autor
  • Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Pol
autor
  • Silesian University of Technology, ul. Krasińskiego 8, 40-019 Katowice, Poland
autor
  • VŠB-Technical University of Ostrava, 17.listopadu 15, 708 33 Ostrava, Czech Republic
Bibliografia
  • [1] M. Avedesian, H. Baker, ASM Specialty handbook, Magnesium and magnesium alloys, ASM International, 1999, 3-84.
  • [2] H. Baker, Physical properties of magnesium and magnesium alloys, The Dow Chemical Company, Midland, 1997.
  • [3] H. Friedrich, S. Schumann, Research for a “new age of magnesium” in the automotive industry, Journal of Materials Processing Technology 117 (2001) 276-281.
  • [4] L. Cížek, M. Greger, L. Pavlica, L.A. Dobrzański, T. Tański, Study of selected properties of magnesium alloy AZ91 after heat treatment and forming, Journal of Materials Processing Technology 157-158 (2004) 466-471.
  • [5] T. Tański, L.A. Dobrzański, L. Cížek, Influence of heat treatment on structure and properties of the cast magnesium alloys, Journal of Advanced Materials Research 15-17 (2007) 491-496.
  • [6] G.B. Hamu, D. Eliezer, L. Wagner, The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy, Journal of alloys and compounds 468/1-2 (2009) 222-229.
  • [7] A. Mwembela, E.B. Konopleva, H.J. McQueen, Microstructural development in Mg alloy AZ31 during hot working, Scripta Materialia 37/11 (1997) 1789.
  • [8] F. Grosman, Plasticity of metallic materials, Deformation behaviour, Structure development, Testing, Modeling, The characteristics of materials technological plasticity, Publishers of the Silesian University of Technology, Gliwice, 2004, 9-34.
  • [9] M.R. Barnett, Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31, Journal of Light Metals 1 (2001) 167.
  • [10] H. Takuda, H. Fujimoto, N. Hatta, Modelling on flow stress of Mg-Al-Zn alloys at elevated temperatures, Journal of Materials Processing Technology 80/81 (1998) 513.
  • [11] T. Tański, L.A. Dobrzański, W. Sitek, L. Cížek, Modeling of mechanical properties magnesium alloy, Proceeding of the 12th Scientific International Conference on Achievements in Mechanical and Materials Engineering, Gliwice-Zakopane, 2003, 293-296.
  • [12] L. Cížek, T. Tański, L.A. Dobrzański, L. Pawlica, R. Kocich, I. Jur?icka, Structure and properties of alloys of the Mg-Al-Zn system, Journal of Achievements in Materials and Manufacturing Engineering 32/2 (2009) 179-187.
  • [13] S. Rusz, L. Cizek, Development of unconventional forming methods, Journal of Achievements in Materials Manufacturing Engineering 54/2 (2012) 194-201.
  • [14] I. Schindler, Development of models of mean equivalent stress suitable for steering systems of hot strip rolling mills, Steel Strip, Ostrava, 2006.
  • [15] http://www.fmmi.vsb.cz/model
  • [16] J. Yanagimoto, Mathematical modeling for rolling force and microstructure evolution and microstructure controlling with heavy reduction in tandem hot strip rolling, Steel Research 73 (2002) 56-62.
  • [17] S. Rusz, Mathematical model of the forming factor and its influence on forging forces at heating, Metal 2005, Hradec nad Moravicí 61 (2005) (in Slovak).
  • [18] I. Schindler, M. Marek, Plasticity of metallic materials, Behavior, structure development, testing, modeling, Publishers of the Silesian University of Technology, Gliwice, 2004.
  • [19] S. Rusz, Hot deformation resistance models based on the rolling forces measurement, Acta Metallurgica Slovaca 11 (2005) 379-387.
  • [20] I. Schindler, M. Spyra, E. Hadasik, S. Rusz, M. Janošec, Models of the forming resistances applied at forging of strips under semiheatin, Metal 2006, Ostrava, 2006 (in Slovak).
  • [21] A.G. Beer, M.R. Barnett, Influence of initial microstructure on the hot working flow stress of Mg-3Al-1Zn, Materials Science and Engineering A 423 (2006) 292-299.
  • [22] H. Takuda, H. Fujimoto, N. Hatta, Modeling on flow stress of Mg-Al-Zn alloys at elevated temperatures, Journal of Materials Processing Technology 80-81 (1998) 513-516.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3eb2f3be-3135-4e63-be89-0dc4fa918b92
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.