PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimates of the Transition Densities for the Reflected Brownian Motion on Simple Nested Fractals

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We give sharp two-sided estimates for the functions gM (t, x, y) and gM (t, x, y) − g(t, x, y), where gM (t, x, y) are the transition probability densities of the reflected Brownian motion on an M-complex of order M ∈ Z of an unbounded planar simple nested fractal and g(t, x, y) are the transition probability densities of the “free” Brownian motion on this fractal. This is done for a large class of planar simple nested fractals with the good labeling property.
Rocznik
Strony
423--440
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
  • Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] M. T. Barlow, Diffusion on fractals, in: Lectures on Probability Theory and Statistics: École d’Été de Probabilités de Saint-Flour XXV – 1995, Lecture Notes in Math., Vol. 1690, Springer, Berlin 1998.
  • [2] M. T. Barlow and R. F. Bass, The construction of Brownian motion on the Sierpiński carpet, Ann. Inst. Henri Poincaré Probab. Stat. 25 (3) (1989), pp. 225-257.
  • [3] M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpiński gasket, Probab. Theory Related Fields 79 (4) (1988), pp. 543-623.
  • [4] K. Bogdan, A. Stós, and P. Sztonyk, Harnack inequality for stable processes on d-sets, Studia Math. 158 (2) (2003), pp. 163-198.
  • [5] P. J. Fitzsimmons, B. M. Hambly, and T. Kumagai, Transition density estimates for Brownian motion on affine nested fractals, Comm. Math. Phys. 165 (3) (1994), pp. 595-620.
  • [6] M. Fukushima, Dirichlet forms, diffusion processes and spectral dimensions for nested fractals, in: Ideas and Methods in Mathematical Analysis, Stochastics, and Applications. In Memory of R. Hoegh-Krohn, Vol. 1, S. Albeverio et al. (Eds.), Cambridge University Press, Cambridge 1992, pp. 151-161.
  • [7] S. Goldstein, Random walks and diffusions on fractals, in: Percolation Theory and Ergodic Theory of Infinite Particle Systems, IMA Vol. Math Appl., Vol. 8, Springer, New York 1987, pp. 121-128.
  • [8] K. Kaleta and M. Kwaśnicki, Boundary Harnack inequality for α-harmonic functions on the Sierpiński triangle, Probab. Math. Statist. 30 (2) (2010), pp. 353-368.
  • [9] K. Kaleta, M. Olszewski, and K. Pietruska-Pałuba, Reflected Brownian motion on simple nested fractals, Fractals 27 (6) (2019), art. 1950104.
  • [10] K. Kaleta and K. Pietruska-Pałuba, Integrated density of states for Poisson-Schrödinger perturbations of subordinate Brownian motions on the Sierpiński gasket, Stochastic Process. Appl. 125 (4) (2015), pp. 1244-1281.
  • [11] K. Kaleta and K. Pietruska-Pałuba, Lifschitz singularity for subordinate Brownian motions in presence of the Poissonian potential on the Sierpiński gasket, Stochastic Process. Appl. 128 (11) (2018), pp. 3897-3939.
  • [12] J. Kigami, Analysis on Fractals, Cambridge University Press, Cambridge 2001.
  • [13] T. Kumagai, Estimates of transition densities for Brownian motion on nested fractals, Probab. Theory Related Fields 96 (2) (1993), pp. 205-224.
  • [14] T. Kumagai, Brownian motion penetrating fractals: An application of the trace theorem of Besov spaces, J. Funct. Anal. 170 (1) (2000), pp. 69-92.
  • [15] T. Kumagai and S. Kusuoka, Homogenization on nested fractals, Probab. Theory Related Fields 104 (3) (1996), pp. 375-398.
  • [16] T. Kumagai and K. Sturm, Construction of diffusion processes on fractals, d-sets, and general metric measure spaces, J. Math. Kyoto Univ. 45 (2) (2005), pp. 307-327.
  • [17] S. Kusuoka, A diffusion process on a fractal, in: Probabilistic Methods in Mathematical Physics: Proceedings of the Taniguchi International Symposium, Katata and Kyoto, 1985, Kino Kuniya-North Holland, Amsterdam 1987, pp. 251-274.
  • [18] S. Kusuoka, Dirichlet forms on fractals and products of random matrices, Publ. Res. Inst. Math. Sci. 25 (4) (1989), pp. 659-680.
  • [19] T. Lindstrøm, Brownian Motion on Nested Fractals, Mem. Amer. Math. Soc. 83 (420) (1990).
  • [20] K. Pietruska-Pałuba, The Lifschitz singularity for the density of states on the Sierpiński gasket, Probab. Theory Related Fields 89 (1) (1991), pp. 1-33.
  • [21] K. Pietruska-Pałuba, The Wiener sausage asymptotics on simple nested fractals, Stoch. Anal. Appl. 23 (1) (2005), pp. 111-135.
  • [22] T. Shima, Lifschitz tails for random Schrödinger operators on nested fractals, Osaka J. Math. 29 (4) (1992), pp. 749-770.
  • [23] R. S. Strichartz, Analysis on fractals, Notices Amer. Math. Soc. 46 (10) (1999), pp. 1199-1208.
  • [24] R. S. Strichartz, Differential Equations on Fractals: A Tutorial, Princeton University Press, Princeton, NJ, 2006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3eae3462-e0ad-4507-af8d-314a83ab1990
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.