PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Universal Power Quality Conditioner (UnPQC) for enhancing the power quality in distribution system

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes a novel custom power device (CPD), called a Universal Power Quality Conditioner (UnPQC), which enhanced the quality of power in a distribution system. UnPQC consists of shunt and series compensators without a common DC link. The series compensator of the presented system, also known as Transformerless Dynamic Voltage Restorer (TDVR), eliminates power quality problems related to voltage without utilizing any injecting transformer. The shunt compensator of the proposed system consists of an improved DSTATCOM (Distribution Static Compensator) topology, which mitigates the current harmonics originating from the nonlinear loads with a reduced DC link voltage. UnPQC is more suitable for applications where weight and size of the CPDs are critical factors. A simulation was carried out to verify and validate the performance of the UnPQC and the results demonstrate superior performance in minimizing voltage and current related power quality problems.
Słowa kluczowe
EN
PL
Rocznik
Strony
195--203
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Vardham an College of Engineering, India
  • Vardham an College of Engineering, India
autor
  • Vardham an College of Engineering, India
autor
  • Vardham an College of Engineering, India
Bibliografia
  • [1] K. H. Kwan, P. L. So, Y. C. Chu, An output regulation-based unified power quality conditioner with kalman filters, IEEE Transactions on Industrial Electronics 59 (11) (2012) 4248–4262.
  • [2] S. Ostroznik, P. Bajec, P. Zajec, A study of a hybrid filter, IEEE Transactions on Industrial Electronics 57 (3) (2009) 935–942.
  • [3] A. Dheepanchakkravarthy, K. Venkatraman, M. Selvan, S. Moorthi, M. Venkata Kirthiga, Capability evaluation of four-leg dstatcom for compensating multifarious loads, Australian Journal of Electrical and Electronics Engineering 13 (4) (2016) 229–243.
  • [4] A. Ghosh, G. Ledwich, Power quality enhancement using custom power devices, Kluwer Publications, 2002.
  • [5] P. Kanjiya, B. Singh, A. Chandra, K. Al-Haddad, “srf theory revisited” to control self-supported dynamic voltage restorer (dvr) for unbalanced and nonlinear loads, IEEE transactions on industry applications 49 (5) (2013) 2330–2340.
  • [6] M. Moradlou, H. R. Karshenas, Design strategy for optimum rating selection of interline dvr, IEEE transactions on power delivery 26 (1) (2010) 242–249.
  • [7] P. Jayaprakash, B. Singh, D. Kothari, A. Chandra, K. Al-Haddad, Control of reduced-rating dynamic voltage restorer with a battery energy storage system, IEEE transactions on industry applications 50 (2) (2013) 1295–1303.
  • [8] V. Kandadai, S. M. Parvathy, M. Sridharan, R. Pitchaimuthu, D. Kurup, Predictive current control of dstatcom for var compensation of grid connected wind farms, Journal of Renewable and Sustainable Energy 9 (2) (2017) 023301.
  • [9] K. Venkatraman, M. P. Selvan, S. Moorthi, Predictive current control of distribution static compensator for load compensation in distribution system, IET Generation, Transmission & Distribution 10 (10) (2016) 2410–2423.
  • [10] S. R. Arya, B. Singh, Implementation of distribution static compensator for power quality enhancement using learning vector quantisation, IET Generation, Transmission & Distribution 7 (11) (2013) 1244–1252.
  • [11] V. Khadkikar, Enhancing electric power quality using upqc: A comprehensive overview, IEEE transactions on Power Electronics 27 (5) (2011) 2284–2297.
  • [12] V. Kandadai, M. Sridharan, S. M. Parvathy, R. Pitchaimuthu, D. Kurup, Performance evaluation of fpga-controlled dstatcom for load compensation, Arabian Journal for Science and Engineering 41 (9) (2016) 3355–3367.
  • [13] P. E. Melín, J. R. Espinoza, L. A. Morán, J. R. Rodriguez, V. M. Cardenas, C. R. Baier, J. A. Muñoz, Analysis, design and control of a unified power-quality conditioner based on a current-source topology, IEEE transactions on power delivery 27 (4) (2012) 1727–1736.
  • [14] M. Brenna, R. Faranda, E. Tironi, A new proposal for power quality and custom power improvement: Open upqc, IEEE Transactions on Power Delivery 24 (4) (2009) 2107–2116.
  • [15] O. Suter, M. Buschmann, G. Linhofer, P. Maibach, Voltage source converter based power quality solutions, in: Asia Pacific Regional Power Quality Seminar, Malaysia, 2005.
  • [16] S. B. Karanki, N. Geddada, M. K. Mishra, B. K. Kumar, A modified three-phase four-wire upqc topology with reduced dc-link voltage rating, IEEE transactions on industrial electronics 60 (9) (2012) 3555– 3566.
  • [17] A. Teke, M. E. Meral, M. U. Cuma, M. Tümay, K. Ç. Bayindir, Open unified power quality conditioner with control based on enhanced phase locked loop, IET Generation, Transmission & Distribution 7 (3) (2013) 254–264.
  • [18] W. R. N. Santos, E. R. C. da Silva, C. B. Jacobina, E. de Moura Fernandes, A. C. Oliveira, R. R. Matias, D. F. Guedes Filho, O. M. Almeida, P. M. Santos, The transformerless single-phase universal active power filter for harmonic and reactive power compensation, IEEE Transactions on Power Electronics 29 (7) (2013) 3563–3572.
  • [19] B. Li, S. Choi, D. Vilathgamuwa, Transformerless dynamic voltage restorer, IEE Proceedings-Generation, Transmission and Distribution 149 (3) (2002) 263–273.
  • [20] K. Venkatraman, S. Moorthi, M. Selvan, Modelling and control of transformer-less universal power quality conditioner (tunpqc): An effective solution for power quality enhancement in distribution system, Journal of Control, Automation and Electrical Systems 28 (1) (2017) 123–134.
  • [21] S. B. Karanki, N. Geddada, M. K. Mishra, B. K. Kumar, A dstatcom topology with reduced dc-link voltage rating for load compensation with nonstiff source, IEEE Transactions on Power Electronics 27 (3) (2011) 1201–1211.
  • [22] I. Nagrath, M. Gopal, Control Systems Engineering, Halsted, NewYork, USA, 1982, Ch. 11, pp. 518–519.
  • [23] O. Kukrer, Discrete-time current control of voltage-fed three-phase pwm inverters, IEEE Transactions on Power Electronics 11 (2) (1996) 260–269.
  • [24] J. Rodriguez, J. Pontt, C. A. Silva, P. Correa, P. Lezana, P. Cortés, U. Ammann, Predictive current control of a voltage source inverter, IEEE transactions on industrial electronics 54 (1) (2007) 495–503.
  • [25] N. Mohan, T. M. Undeland, W. P. Robbins, Power electronics: converters, applications, and design, John wiley & sons, New York, 2003.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ead1457-0f0b-4056-8441-85aac8745114
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.