PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Influence of fin’s material capabilities on the propulsion system of biomimetic underwater vehicle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The technology of Autonomous Underwater Vehicles (AUVs) is developing in two main directions focusing on improving autonomy and improving construction, especially driving and power supply systems. The new Biomimetic Underwater Vehicles (BUVs) are equipped with the innovative, energy efficient driving system consisting of artificial fins. Because these driving systems are not well developed yet, there are great possibilities to optimize them, e.g. in the field of materials. The article provides an analysis of the propulsion force of the fin as a function of the characteristics of the material from which it is made. The parameters of different materials were used for the fin design and their comparison. The material used in our research was tested in a laboratory to determine the Young’s modulus. For simplicity, the same fin geometry (the length and the height) was used for each type of fin. The Euler–Bernoulli beam theory was applied for estimation of the fluid–structure interaction. This article presents the laboratory test stand and the results of the experiments. The laboratory water tunnel was equipped with specialized sensors for force measurements and fluid–structure interaction analysis. The fin deflection is mathematically described, and the relationship between fin flexibility and the generated driving force is discussed.
Rocznik
Tom
Strony
179--185
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Polish Naval Academy, Śmidowicza 69, 81-127 Gdynia, Poland
autor
  • Polish Naval Academy, Śmidowicza 69, 81-127 Gdynia, Poland
  • Polish Naval Academy, Śmidowicza 69, 81-127 Gdynia, Poland
autor
  • Polish Naval Academy, Śmidowicza 69, 81-127 Gdynia, Poland
Bibliografia
  • 1. Behbahani S. B., Tan X. (2017). Role of pectoral fin flexibility in robotic fish performance, Journal of Nonlinear Science, 27, 1155–1181, https://doi.org/10.1007/ s00332-017-9373-6.
  • 2. Tytella E. C., Hsu C.-Y., Fauci, L. J. (2014). The role of mechanical resonance in the neural control of swimming in fishes, Zoology, 117(1), 48–56, https://doi.org/10.1016/j. zool.2013.10.011.
  • 3. Jurczyk K., Piskur P., Szymak P. (2020). Parameters identification of the flexible fin kinematics model using vision and genetic algorithms, Polish Maritime Research, 27(2), 39–47, https://doi.org/10.2478/pomr-2020-0025.
  • 4. Kancharala A. K. (2015). The role of flexibility on propulsive performance of flapping fins, Doctor of Philosophy in Aerospace Engineering, Virginia Tech, Blacksburg, Virginia, https://doi.org/10919/56563.
  • 5. Lauder G. V., Quinn D. B., Smits A. J. (2014). Scaling the propulsive performance of heaving flexible panels, Journal of Fluid Mechanics, 738, 250–267, https://doi.org/10.1017/ jfm.2013.597.
  • 6. Lighthill M. J. (1960). Note on the swimming of slender fish, Journal of Fluid Mechanics, 9(2), 305–317, https://doi. org/10.1017/S0022112060001110.
  • 7. Morawski M., Malec M., Szymak P., Trzmiel A. (2014). Analysis of parameters of traveling wave impact on the speed of biomimetic underwater vehicle, Solid State Phenomena, 210, 273–279, https://doi.org/10.4028/www.scientific.net/ SSP.210.273.
  • 8. Morawski M., Malec M., Zając J. (2014). Development of CyberFish – Polish Biomimetic Unmanned Underwater Vehicle BUUV, Applied Mechanics and Materials, 613, 76–82, https:// doi.org/10.4028/www.scientific.net/AMM.613.76.
  • 9. Morawski M., Słota A., Zając J., Malec M. (2020). Fish-like shaped robot for underwater surveillance and reconnaissance – Hull design and study of drag and noise, Ocean Engineering, 217, 107889, https://doi.org/10.1016/j. oceaneng.2020.107889.
  • 10. Piskur P., Szymak P., Flis L., Jaskólski K., Gasiorowski M. (2020). Hydroacoustic system in a biomimetic underwater vehicle to avoid collision with vessels with low‐speed propellers in a controlled environment, Sensors, 20(4), 968, https://doi. org/10.3390/s20040968.
  • 11. Piskur P., Szymak P., Flis L., Sznajder J. (2020). Analysis of a fin drag force in a biomimetic underwater vehicle, NAŠE MORE: znanstveni časopis za more i pomorstvo, 67(3), 192–198, https://doi.org/10.17818/NM/2020/3.2.
  • 12. Piskur P., Szymak P., Sznajder J. (2020). Identification in a laboratory tunnel to control fluid velocity. In: Bartoszewicz A., Kabziński J., Kacprzyk J. (eds) Advanced, Contemporary Control. Springer, Cham, https://doi. org/10.1007/978-3-030-50936-1_128.
  • 13. Przybylski M. (2019). Mathematical model of biomimetic underwater vehicle, Proceedings of the 33rd International ECMS Conference on Modelling and Simulation, Caserta, Italy (pp. 343–347), http://doi.org/10.7148/2019.
  • 14. Smits A.J., 2019. Undulatory and oscillatory swimming, Journal of Fluid Mechanics, 874, P1, https://doi.org/10.1017/ jfm.2019.284.
  • 15. Szymak P., Morawski M., Malec M. (2012). Conception of research on bionic underwater vehicle with undulating propulsion, Solid State Phenomena, 180, 160–167, https:// doi.org/10.4028/www.scientific.net/SSP.180.160.
  • 16. Szymak P., Przybylski M., (2018). Thrust measurement of biomimetic underwater vehicle with undulating propulsion, Scientific Journal of Polish Naval Academy, 213(2), 69–82, https://doi.org/10.2478/sjpna-2018-0014.
  • 17. Taylor G. K., Nudds R. L, Thomas A. L. R. (2003). Flying and swimming animals at a Strouhal number tuned for high power efficiency, Nature, 425, 707–710. https://doi.org/10.1038/ nature02000.
  • 18. Tytell E. D., Leftwich M. C., Hsu C.-H., Griffith B. E., Cohen A. H., Smits A. J., Hamlet C, Fauci, L. J. (2016). Role of body stiffness in undulatory swimming: Insights from robotic and computational models, Physical Review Fluids, 1, 073202, https://doi.org/10.1103/PhysRevFluids.1.073202.
  • 19. Wu X., Zhang X., Tian X., Li X., Lu W. (2020). A review on fluid dynamics of flapping foils, Ocean Engineering, 195, 106712, https://doi.org/10.1016/j.oceaneng.2019.106712.
  • 20. Yang L., Xiao Q., Shi G., Li Wen, Chen D., Pan G. (2020). A fluid–structure interaction solver for the study on a passively deformed fish fin with non-uniformly distributed stiffness, Journal of Fluids and Structures, 92, 102778, https://doi. org/10.1016/j.jfluidstructs.2019.102778.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3eac1ac9-8593-44e6-9305-8085d99d3bcc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.