Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The activation method for 99Mo production in comparison to fi ssionable target irradiation in research reactors is less preferable. Therefore, 99Mo yield using UO2SO4 samples was theoretically investigated. Computational results revealed admirable potential of the liquid samples for 99Mo production. Low-concentrated uranyl sulphate samples could easily be handled by the irradiation box. The sample geometry optimization improves thermal hydraulic conditions and production yield. The optimized geometry including only 0.12 g 235U produced 57Ci99Mo at end-of-irradiation (EOI) with a temperature peak of 72°C during the irradiation.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
37--45
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
- Reactor Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
autor
- Reactor Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
autor
- Reactor Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
autor
- Reactor Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
autor
- Reactor Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
Bibliografia
- 1. Rao, A., Kumar Sharma, A., Kumar, P., Charyulu, M. M., Tomar, B. S., & Rama Kumar, K. L. (2014). Studies on separation and purification of fission 99Mo from neutron activated uranium aluminum alloy. J. Appl. Radiat. Isot., 89, 186–191. DOI: 10.1016/j.apradiso.2014.02.013.
- 2. Muenze, R., Juergen Beyer, G., Ross, R., Wagner, G., Novotny, D., Franke, E., Jehangir, M., Pervez, S., & Mushtaq, A. (2013). The fission-based 99Mo production process ROMOL-99 and its application to PINSTECH Islamabad. Sci. Technol. Nucl. Install., 2013, Article ID 932546, 9 pp. http://dx.doi.org/10.1155/2013/932546.
- 3. Ali, K. L., Ahmad Khan, A., Mushtaq, A., Imtiaz, F., MaratabZiai, A., Gulzar, A., Farooq, M., Hussain, N., Ahmed, N., Pervez, S., & Zaidi, J. H. (2013). Development of low enriched uranium target plates by thermo-mechanical processing of UAl2–Al matrix for production of 99Mo in Pakistan. J. Nucl. Eng. Des., 255, 77–85. DOI: 10.1016/j.nucengdes.2012.10.014.
- 4. Burril, K. A., & Harrison, R. J. (1989). Development of the 99Mo process at CRNL. In Fission molybdenum for medical use. Proceedings of Technical Committee Meeting organized by the International Atomic Energy Agency and held in Karlsruhe, 13–16 October 1987 (pp. 35–46). Vienna: International Atomic Energy Agency. (IAEA-TECDOC-515).
- 5. Arino, H., Kramer, H. H., McGovern, J. J., & Thornton, A. K. (1974). Production of high purity fission product molybdenum-99. U.S. Patent 3,799,883.
- 6. Youker, A. J., Chemerisov, S. D., Kalensky, M., Tkac, P., Bowers, D. L., & Vandegrift, G. F. (2013). A solution-based approach for Mo-99 production: Considerations for nitrate versus sulfate media. J. Sci. Technol. Nucl. Install., 2013, Article ID 402570, 10 pp. http://dx.doi.org/10.1155/2013/402570.
- 7. Bennett, M. E., Bowers, D. L., Pereira, C., & Vandegrift, G. F. (2014). Conversion of uranyl sulfate solution to uranyl nitrate solution for processing in UREX. In 2014 Mo-99 Topical Meeting, 24–27 June 2014, Washington D.C. (S9-P1, 11 pp.). Available from http://mo99.ne.anl.gov/2014/pdfs/papers/S9P1%20Paper%20Bennett.pdf.
- 8. Elgin, K. (2014). A study of the feasibility of 99Mo production inside the TU Delft Hoger Onderwijs Reactor, A Monte Carlo serpent analysis of the HOR research reactor and its medical isotope production capabilities using uranium salts. Thesis, Delft University of Technology, The Netherlands.
- 9. Micklich, B. J. (2015). Remanent activation in the mini-SHINE experiments. In 3rd International Workshop on Accelerator Radiation Induced Activation (ARIA’15), 15–17 April 2015, Knoxville, Tennessee, USA (36 pp.). Available from https://public.ornl.gov/neutrons/conf/aria2015/presentations/12%20Remanent%20Activation%20in%20the%20mini-SHINE%20Experiments.pdf.
- 10. May, I., Rios, D., Anderson, A. S., Bitteker, L., Copping, R., Dale, G. E., Dalmas, D. A., Gallegos, M. J., Garcia, E. K., Kelsey, C. T., Mocko, M., Reilly, S. D., Stephens, F. H., Taw, F. L., & Woloshun, K. A. (2013). A technical demonstration of the initial stage of Mo-99 recovery from a low enriched uranium sulfate solution. Los Alamos National Laboratory. (LA-UR-13-28967).
- 11. Ball, R. M. (1997). Characteristics of nuclear reactors used for the production of molybdenum-99. In Production technologies for molybdenum-99 and technetium-99m (pp. 5–17). Vienna: International Atomic Energy Agency. (IAEA-TECDOC-1065).Availaible from http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/30/013/30013597.pdf.
- 12. Pelowitz, D. B. (2008). MCNPX User’s Manual. Version 2.6.0.s.l. Los Alamos National Laboratory. (LA-CP-07-1473).
- 13. Fensin, M. L. (2008). Development of the MCNPX depletion capability: A Monte Carlo depletion method that automates the coupling between MCNPX and CINDER90 for high fidelity burnup calculations. Florida University.
- 14. IAEA. (2008). Homogeneous aqueous solution nuclear reactors for the production of Mo-99 and other short lived radioistotopes. Vienna: International Atomic Energy Agency. (IAEA-TECDOC-1601).
- 15. Briesmeister, J. F. (2000). MCNP-A General Monte Carlo N-Particle Transport code Version 4C. Los Alamos National Laboratory. (LA-13709-M).
- 16. Gallmeier, F. X., Iverson, E. B., Lu, W., Ferguson, P. D., Holloway, S. T., Kelsey, Ch., Muhrer, G., Pitcher, E., Wohlmuther, M., & Micklich, B. (2010). The CINDER’90 transmutation code package for use in accelerator applications in combination with MCNPX. In Proceedings of the19th Meeting on Collaboration of Advanced Neutron Sources, March 8–12, 2010(6 pp.), Grindelwald, Switzerland. Available from http://www.iaea.org/inis/collection/NCLCollection-Store/_Public/46/109/46109595.pdf?r=1.
- 17. Slessarev, I. (2000). Long term radiotoxicity. Lecture given at the Workshop on Nuclear Data and Nuclear Reactors: Physics, Design and Safety, Trieste, 13 March – 14 April, 2000 (LNS015029). Available from http://users.ictp.it/~pub_off/lectures/lns005/Number_2/Slessarev_1.pdf.
- 18. Rijnsdorp, S. (2014). Design of a small Aqueous Homogeneous Reactor for production of 99Mo. M.Sc.Thesis, Delft University of Technology, The Netherlands.Available from http://www.janleenkloosterman.nl/reports/thesis_rijnsdorp_2014.pdf.
- 19. Köster, U. (2011). Present day production of 99Mo and alternatives. Grenoble: Institut Laue Langevin.
- 20. Mohammad, A., Mahmood, T., & Iqbal, M. (2009). Fission MOLY production at PARR-1 using LEU plate type target. J. Nucl. Eng. Des., 239, 521–525. DOI: 10.1016/j.nucengdes.2008.11.008.
- 21. Tárkányi, F., Hermanne, A., Takács, S., Sonck, M., Szücs, Z., Király, B., & Ignatyuk, A. V. (2011). Investigation of alternative production routes of 99mTc: deuteron induced reactions on 100Mo. J. Appl. Radiat. Isot., 69, 18–25. DOI: 10.1016/j.apradiso.2010.08.006.
- 22. Ruth, T. J. (2015). The medical isotope crisis: How we got here and where we are going. Vancouver, British Columbia, Canada: TRIUMF and the BritishColumbia Cancer Agency.
- 23. Jun, B. J., Tanimoto, M., Kimura, A., Hori, N., Izumo, H., & Tsuchia, K. (2010). Feasibility study on mass production of (n,γ)99Mo. Japan Atomic Energy Agency.(JAEA-Research 2010-046).
- 24. Rosenthal, G. B., & Lewin, H. C. (2014). Production of 99Mo using high-current alpha beams. In NNSA’s 2014 Mo-99 Topical Meeting, 24–27 June 2014, Washington D.C. Available from http://mo99.ne.anl.gov/2014/pdfs/papers/S11P4%20Paper%20Rosenthal.pdf.
- 25. Faghihian, H., Malekpour, A., & Maragheh, M. G. (2003). Modification of clinoptilolite by surfactants for molibdate (99Mo) adsorption from aqueous solutions. J. Sci. Islamic Republic of Iran, 14, 239–245.
- 26. Stepinski, D. C., Gelis, A. V., Gentner, P., Bakel, A., & Vandegrift, G. F. (2008). Evaluation of Radsorb, Isosorb (Termoxid) and PZC as potential sorbents for separation of 99Mo from a homogeneous-reactor fuel solution. In Homogeneous aqueous solution nuclear reactor for the production of Mo-99 and other short lived radioisotopes (pp. 73–80). Vienna: International Atomic Energy Agency. (IAEA-TECDOC-1601).Available from http://www-pub.iaea.org/MTCD/Publications/PDF/te_1601_web.pdf.
- 27. Ling, L., Chung, P. L., Youker, A., Stepinski, D. C., Vandegrift, G. F., & Wang, N. H. L. (2013). Capture chromatography for Mo-99 recovery from uranyl sulfate solutions: Minimum-column-volume design method. J. Chromatogr. A, 1309, 1–14. DOI: 10.1016/j.chroma.2013.08.023.
- 28. Dale, G. E., Dalmas, D. A., Gallegos, M. J., Jackman, K. R., Kelsey, C. T., May, I., Reilly, S. D., & Stange, G. M. (2012). 99Mo separation from high-concentration irradiated uranium nitrate and uranium sulfate solutions. J. Ind. Eng. Chem. Res., 51, 13319–13322. DOI: 10.1021/ie3008743.
- 29. Wu, D., Landsberger, S., Buchholz, B. A., & Vandegrift, G. F. (1994). Processing of LEU targets for 99Mo production – testing and modification of the cintichem process. Lecture presented at the 1995 International Meeting on Reduced Enrichment for Research and Test Reactors, September 18–21,1994, Paris, France. Available from http://www.rertr.anl. gov/MO99/WU95.pdf.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ea99b76-8ceb-4e43-9ab6-a21e2c13e130