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1. Learning from disasters and dangers 

Plane crashes, automobile accidents, train 
derailments, medical malpractice, bridge collapses, 
stock market crashes, building fires, and product cost 
escalations – all have a common cause. It is the 
failings, foibles, and fallibility of us, the human 
drivers, the bankers, builders, doctors or pilots, the 
speculators, lawyers and regulators. We are all an 
integral and inseparable part of the transportation, 
manufacturing, financial, production and social 
systems in which we work, perform, drive, fly, 
design, invest, use or operate, or just have a job. 
Conversely, as opposed to our many failures and 
errors, we have successes and achievements. 
Avoiding losses, accidents and tragedies, reducing 
event rates and even the near-misses, we achieve 
success by learning, as we gain skill and knowledge 
by and from our accumulated experience. This 
learning from experience includes all the existing 
and pre-existing knowledge and skill acquisition for 
the system. 
It should be obvious that we must learn from our 
mistakes, as intelligent creatures are supposed to do,  
correcting our errors and mending our ways, training 
ourselves, using our both good and bad experiences. 

We correct our conscious and unconscious mental 
models of the world and our reaction to it, and 
hopefully shift our behavior as we gain knowledge, 
understanding and skill. So all of society, and 
ourselves, should have progressively safer, less risky 
systems and behaviors as we learn. Knowing what 
we know, we should be able to predict when an 
accident or tragedy will occur to us, and what to do 
and how to manage our risk exposure, or reduce our 
chance of harm, be it physical, fiscal or 
psychological. After all, we have had many centuries 
of learning, developing and using technological 
machines, the lawn mowers, cars, airplanes, rockets, 
trains, controls, and signals of our everyday world. 
As individuals in any system, and as individual 
human beings, we learn to survive, improve and gain 
knowledge. 
 The number of casualties, deaths or injuries − heart 
rending though they are − is purely yet another 
arbitrary statistic, at most a media moment and a 
highly personal tragedy. Some events in our lives, 
like medical errors, being stuck in a hotel elevator or 
a fire, experiencing a train derailment or a aircraft 
near-miss, are not due to anything under our real 
control, as we offer our bodies or ourselves up for 
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transport, diagnosis, treatment, practice and 
operations. Nothing we do is “risk free”, so as a 
society we have to tolerate some risk (a chance 
accident or outcome) and just hope it does not 
happen to us as an individual. But we do not know if 
it will, although we can simply make a statistical 
estimate that it is unlikely to happen to ourselves, 
since we are just one person amongst many risk-
exposed people. We make or avoid such decisions 
every day. 
 Massive inquiries into the more spectacular events, 
like the UK Ladbroke Grove railway collision, the 
USA Three Mile Island reactor melt down, the Space 
Shuttle losses, the Buncefield fire, the Toulouse and 
Texas City explosions, all these and others all show 
the cause is due to an unexpected combination or 
sequence of human, management, operational, design 
and training mistakes. Once we know what 
happened, we can fix the engineering or design 
failures, and try to obviate the human ones by fines, 
rules and punishments, hoping in a very human way 
that it “will not happen again”. 
Knowing what we know, what we have experienced 
up till now, is it actually possible to predict the 
future? The possibility of an accident, or even a 
repeat? The price of a product, and whether it will 
rise or fall? How likely is it that something will 
actually happen? When will we even see and 
measure it? Hidden in the seemingly impersonal data 
of the events that happen to “others”, behind the 
almost routine reporting of the statistics of deaths, 
injuries, accidents, costs, crashes and errors is the 
valuable and key information that we must not 
neglect, that we ignore at our peril. It is the learning 
or forgetting trends for both the number and the rate 
of events as a function of our experience. In 
predicting these events, and proceeding further in our 
analysis, we are guided and governed solely by data.  
 
2. Disasters, accidents and deaths: the 
learning hypothesis 

Accidents and outcomes are seemingly random in 
their occurrence, like the crashes of the Space Shuttle 
or Concorde, the great North East Blackout, the 
Chernobyl reactor exploding, the auto crash down 
the road, the ding in the parking lot, the surgery that 
did not go as planned, the stock price that decreased 
not increased. They seemingly can occur as observed 
outcomes at any instant, without warning. But in 
fact, this very apparent randomness is also containing 
information. Since these events are due to a 
combination of human and technological system 
failures, working together in totally unexpected 
and/or undetected ways, occurring at some random 
moment, they actually exhibit overall the impact of 
our experience, personally and collectively with that 

system, linking our very individual cognitive 
learning (that goes on inside our brains) with our 
entire social learning (inside our group, organization 
or even culture). This happens because we share and 
manage the results of our learning opportunities, and 
do that randomly also as we learn and unlearn what 
is right, wrong, harmful or risky to do. 
The human rules governing the market and personal 
behavior, the tug and pull between supply and 
demand, the fine line or gray area between the safe 
and the unsafe, and the elusive social concepts and 
constructs of safety culture, risk aversion, and 
engineering system complexity are the stuff and 
content of our modern technical world, and which 
inform and colour the decisions we make every day. 
Our own work [1], [2] has shown that what governs 
the outcomes we observe is the way humans behave 
and learn from their own and collective mistakes, as 
we are seemingly doomed to rediscover and make 
errors. Thus, the Learning Hypothesis states simply: 
The rate of reduction of the error rate is 
proportional to the rate. 
We introduce corrective and best practice 
procedures, training, rules, safety measures and 
management incentives to minimize the number and 
chance of mistakes. In cognitive psychology, 
performance and neurology there is a plethora of 
“models” for human decision making, psychological 
reasoning, mental learning, social behavior and 
decision making, including how we learn and behave 
under stress, make judgments, take actions, gain 
skill, plus how we might train, and how we may use 
our skill, rule and knowledge base to improve. All of 
this material and literature is largely empirical and 
qualitative. The results of repetitive tests on learning 
and pattern recognition by individual subjects 
empirically correlate and explain the improvement in 
skill and response with repetitive trials, just as 
surgeons and pilots gain skill and reduce errors from 
repeated practice, both in real life and in simulators. 
The result of the Learning Hypothesis is the 
Universal learning Curve (ULC) that is shown in 
Figure 1. As both systems and individuals (after all a 
system is just a collection of individuals), we 
progress and gain skill by going down the curve, 
transitioning from being a novice/learner to 
becoming an expert at sufficiently large experience, 
finally achieving a finite, non-zero outcome rate. 
 
3. Proof of principle: validation of the 
universal learning curve 

Contrary to many statements and perceptions, there 
is no shortage of data on human failings and 
mistakes − so we have deliberately cast a wide net 
[1], [2]. We have thus been able to make a 
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measurable and testable prediction about the 
universal rate at which mistakes (outcomes or errors) 
are made or will occur, and that rate is determined by 
our individual and collective accumulated 
experience. The information we have collected and 
validated uses officially and publicly available data 
that generally show a definite learning trend, and 
support the universal applicability. We know of no 
other validation exercise of such breadth and extent, 
and not only can the data now be normalized on the 
same chart, but can and does also show 
unambiguously that they all follow the same learning 
trend. Previously hidden in and by the yearly trends 
that are usually discussed and reported, what really 
matters is to adopt the relevant experience measure 
which is not usually calendar time. The information 
we have researched and analyzed covers nearly 200 
years of knowledge from literally millions of 
multitudinous observations [1], [2]. The entire 
learning and probability datasets now include the 
following sources and outcomes, with the historical 
time spans shown in brackets: 
a) From official government and industry websites 

USA auto passenger deaths numbering 181,086 
(1975-1996); 833,494 railway injuries (1975-
1999); 31,770 coal mining deaths (1938-1998); 
some 8696 oil spills of over 1000 gallons each at 
sea (1961-2001); 3386 airline near-misses (1980-
1997); 6784 recreational boating deaths (1960-
1996); and some 3386 reported mid-air near-
misses (1980-1997). 

b) More globally, the learning data set we have 
amassed now contains multiple technologies 
worldwide: coal and gold mining injuries in 
Australia, UK and South Africa (1969-1999); 
worldwide over 20 million pulmonary disease 
deaths (1840-1970); some 284,797 cataract 
operations in Canada (2001-2003); 283 infant 
heart surgeries in UK (1984-1995); a world-wide 
total of 1882 rocket launches (1962-2005); some 
46,510 auto deaths (1981-1999); 247 pilot deaths 
in Australia (1990-2005); fatal crashes for over 
210 million commercial airline flights (1970-
2000); on UK railways some 1652  train 
derailments (1988-1999); 4568 danger signals 
passed (1994-2000); 1359 Canadian mid-air “air 
proximity” events (1989-1998); and the anti-
missile interception and destruction of 3861 
German V1 bombs (1944). 

c) Systems that do not show significant learning, as 
measured by decrease or declining loss and error 
trends include adverse medical events (errors), a 
sample of some 376,962 deaths in reported 
studies (1975-2005) of where work habits, 
traditional practices, legal issues, management 
and liability pressures, and patient confidentiality 

constraints all defy openness and error reduction. 
Also a nearly constant rate of one per thousand 
shipping-years pervades the thousands of global 
shipping losses at sea (for 1800-1950 and 1972-
1997) where the continuing influence and 
reliance on the human element overrides massive 
changes in technology and the robustness of ship 
design. In each case, large efforts are underway 
nationally to understand the lack of learning 
trends and reduce the event rates, for many 
commercial, perception and genuine safety 
reasons. 

d) Data for individual actions (as opposed to system 
outcomes) are available from many thousands of 
individual human subject task and learning trials 
in the psychological literature (1930-2000). 
These have established the rate of skill 
acquisition via Laws of Practice, which we have 
shown are consistent with the ULC, and also the 
reduction is response time with repeated trials. 
Individual surgical skills do however improve 
with practice, as shown by data for cataract and 
heart surgeries. In addition, the system learning 
behavior mirrors that of the individuals within. 
The predicted probability of operator error 
agrees with about 900 published French nuclear 
plants events (1997-1998); and with 55 or more 
simulator tests conducted for nuclear power 
plants (2003). Recovery actions for power 
restoration for 148 power losses at over 100 US 
nuclear power plants from 1986-2004 are also in 
agreement, as well as the power blackout repairs 
probability for New York Queen’s Borough that 
affected (i.e., disconnected) some 175,000 
customers over a period of several days. 

These are the cases for which data exists − and they 
form a compelling picture of the learning effect on 
error, accident and event rates (Figure 1).  

Universal Non-Dimensional Learning Curve:
Theoretical Best Fit to Worldwide Error Rates 
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Figure 1. The Universal Learning Curve. 
 
In addition to selecting the relevant and known 
measure for experience or risk exposure, the two 
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“free” parameters in the model derived from the data 
are important, and are: 
1. The learning rate constant, k, which impacts the 

shape of the exponential, and a “universal” or 
average value value of k~3 seems to be the best 
fit to the meta-analysis of all data, but individual 
sets may of course have slightly superior fits 
using slightly different values. 

2. The minimum error rate, λm, which is the 
baseline or lowest attainable value, which is 
about one per 200,000 experience-hours as 
derived from the commercial aircraft fatal 
accidents, mid-air near-misses, boiler failures, 
licensing paperwork errors, and auto accidents 
for experienced (older) drivers.      

With these two facts derived from observation and 
tested against data, we are able to make predictions. 
 
4. The probability of failure or success: the 
human bathtub 

The observed, prior or past data allow us to calculate 
the probability of any outcome as a function of our 
accumulated experience. The failure rate provides 
the expression for the probability of any outcomes, 
and the resulting curve is called the Human Bathtub 
because of its shape (Figure 2). 
Basically, the probability starts out high when we are 
a novice with little experience and there is an almost 
equal chance of making a mistake or not (i.e., about 
50:50). As we learn and gain experience, we descend 
into the bottom exponentially, depending on the rate 
of learning. Generally, this is nearly a constant 
factor, so the indicator of our risk probability varies 
with experience until we reach the minimum 
probability (of about one in a thousand). Ultimately, 
we climb out of the bathtub, the probability 
increasing again, due to the non-zero minimum rate. 
Eventually at sufficiently large experience, and 
despite being an expert, we are doomed to have an 
outcome (a probability of unity) since the total risk 
exposure (experience) interval is now very large. 
This certainty of an outcome is not a reason to be 
depressed or fatalistic – we can defer reaching this 
certainty by having a sufficiently low minimum rate, 
and making changes to our system(s) if and when we 
detect or measure the increase occurring. 
The available data again support this trend, but only 
when there is a meaningful measure available or 
recorded for experience. Demonstrated examples of 
the relevant experience measures include: 
a) numbers of flights for commercial airline fatal 

accidents (1970-2000); 
b) amount of oil shipped by sea for oil spills (1973-

2000); 
c) time into the transient for nuclear plant events 

(1997-1998); 

d) launch and burn time for rocket failures (1962-
2005); and  

e) restoration/recovery time for nuclear plant power 
losses (1986-2004). 

The resulting Human Bathub curve is compared to 
these data in Figure 2, from which it is self-evident 
that the data and theory are in accord. Since the 
probability of success is the complement or opposite 
of failure, the probability of success is automatically 
reclaimed.  
 

 
Figure 2. The Human Bathtub 
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when it is uncertain and unknown. This has been 
called in financial circles as the “Black Swan”, 
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which occurrence probability we have shown is in 
fact calculable on the basis of sampling the known 
and unknown outcomes [2]. 
This whole issue of personal risk and predicting 
when and where an event will occur cannot be 
simply solved using such human-centered rule, 
regulation, recommendation and design practices to 
make items and technology safer and simpler to use. 
It also cannot be solved by inquiries into cause of 
failure; or meting out punishment for failure; or legal 
and fiscal assignment of responsibility. These are all 
case-by-case, item-by-item, after-the-fact, without 
general application. Instead, we need to understand 
how we must and do learn from our mistakes and 
improve our safety and performance as we go, so we 
may anticipate and prevent using prior knowledge. 
With a firm basis, we can now make predictions, 
using Bayesian reasoning and approaches. The 
formula can be expressed symbolically in words as: 
Probability of a future outcome (Posterior, p(P)) is 
given by the historical or known probability  (Prior, 
p(ε)) times the conditional chance of the event 
occurring (Likelihood, p(L)) given what has 
happened before. 
The Human Bathtub shown in Figure 2 provides a 
unique estimate of the prior, p(ε), whereas the 
likelihood is given by the chance that the next event 
will occur in the next increment of experience, so 
that p(P) ~ 1/ε, or the simple rate at which outcomes 
are occurring randomly anyway as we gain 
experience or are risk exposed. 
Now, because the outcomes and events (like the 
crashes of cars, planes, trains and stock markets) 
occur randomly, the number of possible ways they 
could occur or be observed as given by the 
information entropy, H. Classically, it can be shown 
that mathematically, H, is given by the summation of 
the known prior probability distribution (or 
symbolically, H=Σ p ln p). This quantity is a unique 
measure of uncertainty, and relates to the “missing 
information” and is uniquely related to the depth of 
experience that we as individuals and collective 
systems accumulate. In essence, and in a very real 
way, the information entropy, or H-factor, is both a 
measure of the random firing of neurons as we 
establish skill and knowledge patterns in our (plastic) 
brains, but also reflects and measures the random 
interactions and learning behavior of the myriad of 
individuals in any technological, corporate or 
working operation. Since the H-factor is a function 
of depth of experience, it exhibits the required 
learning trends and systematic reduction with 
increasing experience. In effect, we must have 
disorder (random happenings in the systems and 
neuron firings in the brains in that system), so that 
order, knowledge acquisition, skill and learning 

emerge. This is analogous to the emergence of order 
in chemical and physical systems, and applies both to 
our individual brains and to our collective 
organizations. 
By quantifying the randomness, the uncertainty and 
the disorder, using the H-factor, we incidentally have 
provided a new objective measure of those illusive 
but desirable attributes and concepts of “safety 
culture”, “organizational learning” and “engineering 
resilience”, which previously were simply subjective 
desiderata. But now for the first time we can be both 
objective and predictive, and compare to actual data.  
We have shown that the systematic data trends agree 
with the depth of experience concept, at least for the 
cases with data for commercial aircraft near-misses 
in the USA and UK, and automobile fatalities in 
Australia. The conformation of the use of the H-
factor to elucidate learning trends and relative 
performance improvements has been achieved 
recently for four very disparate industries (see Figure 
3): 
a) safety performance indicators from  North Sea 

oil and gas offshore rigs; 
b) train derailments in the UK; 
c) underground coal mining injuries in the USA; 

and 
d) commercial airline near-misses in the USA. 
 

Figure 3. The Information H-factor comparisons 
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magnitude (occurrence numbers) may be affecting 
our perception of relative risk. We thus look for, 
expect and appreciate learning and risk reduction 
with experience. But we also expect reductions in the 
number of events/deaths; so are apparently also more 
fearful of the larger numbers of events/deaths 
reported for some activities/systems than for others. 
So this new H-factor idea that we propose here is not 
in conflict, or at best is not rejected by these key 
example cases, and coincides with or reflects our risk 
perception. We can suggest that humans can and do 
somehow quantify the basis for our relative risk 
perceptions based on our expectation of learning due 
to the number and distribution of outcomes. These 
represent our collective and individual learning 
patterns and responses. Other factors, like fear, risk 
aversion or risk taking behavior, and personal risk 
exposure obviously may have an influence, and be 
stronger in some cases than others. 
 
6. Conclusions: managing the future risk 

We have derived the trends for the variation of risk 
as we gain experience and correct our mistakes. The 
rate and probability of events, outcomes, disasters 
are both a specific function and depend on our 
accumulated experience, as we learn and gain 
skill.The Learning Hypothesis is verified by 
extensive data comparisons. We have demonstrated 
the principle of a dependence of the distribution of 
the number of observed outcomes on the depth of 
experience, and that this trend is possibly reflected in 
our perception of risk.   
We have linked individual learning and skill 
acquisition to the systematic risk reduction observed 
for entire systems with increasing experience. Of 
most importance to the present discussion is 
providing the basis for analyzing trends, and also 
provides a basis for understanding data trends and 
making future predictions. The results will be of 
interest to those interested and engaged in risk 
management, and in the social sciences where risk 
perception is important. 
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