PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Analysis of shear wave velocity estimation using MASW on sloping grounds

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Applying the multichannel analysis of surface waves (MASW) test in sloping ground conditions is of significant interest in the geotechnical investigation when estimating a subsurface shear wave velocity (Vs) profile. The soil stratification in sloping ground violates the assumption of the horizontal soil layer in the vertically heterogeneous medium and results in misinterpretation of the Vs profile in a MASW test. One of the major challenges in this context is to identify an effective frequency range that can be used to invert the dispersion curves. This study presents a methodological framework to address the issues mentioned above. The analysis involves finite element (FE) simulations for a homogeneous sloping soil model and a six-layer sloping soil model, along with the field test validation. The wavefield was recorded for the duration of 0.3 s with a sampling frequency of 4000 Hz. Spectral characteristics of the recorded wavefield, such as attenuation of Fourier amplitudes as a function of offset distance and amplification/de-amplification of the wave amplitude (through different velocity layers), were examined. Moreover, the variation of unwrapped phases and cross power spectrum (CPS) between each pair of receivers was analyzed to identify the effective frequency range of dispersion curves. Finally, the proposed approach was successfully validated using a comparison of the Vs profiles obtained from field MASW and downhole seismic tests.
Czasopismo
Rocznik
Strony
359--378
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
  • Department of Civil Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382055, India
  • GNS Science, Lower Hutt, New Zealand
  • Department of Civil Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382055, India
Bibliografia
  • 1. Arslan U, Crocker JA, Vantassel JP, Cox BR (2021) Ability of the multichannel analysis of surface waves method to resolve subsurface anomalies. IFCEE 2021 GSP, pp 360-371. https://doi.org/10.1061/9780784483428.037
  • 2. Balakrishnan V (2003) All about the dirac delta function. Resonance 8:48-58. https://doi.org/10.1007/bf02866759
  • 3. Chai HY, Cui YJ, Wei CF (2012a) A parametric study of effective phase velocity of surface waves in layered media. Comput Geotech 44:176-184
  • 4. Chai H, Phoon K, Goh S, Wei C (2012b) Some theoretical and numerical observations on scattering of Rayleigh waves in media containing shallow rectangular cavities. J Appl Geophys 83:107-119. https://doi.org/10.1016/j.jappgeo.2012.05.005
  • 5. Chai H, Goh S, Phoon K, Wei C (2013) Effects of source and cavity depths on wave fields in homogeneous half spaces. J Appl Geophys 93:52-59. https://doi.org/10.1016/j.jappgeo.2013.03.009
  • 6. Chakraborty S (2008) Some applications of dirac’s delta function in statistics for more than one random variable. Appl Appl Math 3:42-54
  • 7. De Bremaecker JC (1958) Transmission and reflection of Rayleigh waves at corners. Geophysics 23:253-266. https://doi. org/10.1190/1.1438465
  • 8. Evangelista L, Santucci de Magistris F (2015) Some limits in the use of the MASW technique in soils with inclined layers. Geotech Geol Eng 33:701-711. https://doi.org/10.1007/s10706-015-9852-1
  • 9. Feng X, Zhang H (2018) Exact closed-form solutions for Lamb’s problem. Geophys J Int 214:444-459. https://doi.org/10.1093/gji/ggy131
  • 10. Foti S, Lai CG, Rix GJ, Strobbia C (2014) Surface wave methods for near-surface site characterization. CRC press
  • 11. Fuyuki M, Matsumoto Y (1980) Finite difference analysis of Rayleigh wave scattering at a trench. Bull Seismol Soc Am 70:413-420
  • 12. Ganji V, Gucunski N, Maher A (1997) Detection of underground Obstacles by SASW methods-Numerical aspects. J Geotech Geoenvironmental Eng 123:212-219
  • 13. Grandjean G, Bitri A (2006) 2M-SASW: multifold multichannel seismic inversion of local dispersion of Rayleigh waves in laterally heterogeneous subsurfaces: application to the Super-Sauze earthflow. France near Surf Geophys 4:367-375. https://doi.org/10.3997/1873-0604.2006010
  • 14. Johnson LR (1974) Green’s function for Lamb’s problem. Geophys J r Astr Soc 37:99-131
  • 15. Jokar MH, Rahnema H, Boaga J, Cassiani G, Strobbia C (2019) Application of surface waves for detecting lateral variations: buried inclined plane. Near Surf Geophys 17:501-531. https://doi.org/10.1002/nsg.12059
  • 16. Kawase H (1988) Time-domain response of a semi-circular canyon for incident SV, P, and Rayleigh waves calculated by the discrete wavenumber boundary element method. Bull Seismol Soc Am 72:1167-1183
  • 17. Kim BY, Ha T, Choi J, Chung C (2007) The influence of dynamic properties of ground soil on vibration characteristics of rigid body on sand ground. Civ Eng 11:81-91
  • 18. Kim JT, Kim DS, Park HJ, Bang ES, Kim SW (2010) Evaluation of the applicability of the surface wave method to rock fill dams. Explor Geophys 41:9-23. https://doi.org/10.1071/EG09054
  • 19. Kirkwood J (2018) Mathematical physics with partial differential equations. Academic Press
  • 20. Knopoff L, Gangi AF (1960) Transmission and reflection of Rayleigh waves by wedges. Geophysics 25:1203-1214. https://doi.org/10.1190/1.1438807
  • 21. Kumar J, Naskar T (2015) Effects of site stiffness and source to receiver distance on surface wave tests’ results. Soil Dyn Earthq Eng 77:71-82. https://doi.org/10.1016/j.soildyn.2015.04.022
  • 22. Kumar J, Naskar T (2017) Resolving phase wrapping by using sliding transform for generation of dispersion curves. Geophysics 82:V127-V136. https://doi.org/10.1190/GEO2016-0207.1
  • 23. Kumar J, Rakaraddi PG (2013) Effect of source energy for SASW test- ing on geological sites. Geotech Geol Eng 31:47-66. https://doi.org/10.1007/s10706-012-9561-y
  • 24. Kuo JT, Thompson GA (1963) Model studies on the effect of a sloping interface on Rayleigh waves. J Geophys Res 68:6187-6197. https://doi.org/10.1029/jz068i022p06187
  • 25. Luo Y, Xia J, Liu J, Xu Y, Liu Q (2008) Generation of a pseudo-2D shear-wave velocity section by inversion of a series of 1D dispersion curves. J Appl Geophys 64:115-124. https://doi.org/10.1016/j.jappgeo.2008.01.003
  • 26. Luo Y, Xia J, Miller RD, Xu Y, Liu J, Liu Q (2009) Rayleigh-wave mode separation by high-resolution linear radon transform. Geophys J Int 179:254-264. https://doi.org/10.1111/j.1365-246X.2009.04277.x
  • 27. Mckenna F, Fenves G, Scott M (2016) OpenSees-open system for earthquake engineering simulation. University of California, Berkeley, CA, Pacific Earthquake Engineering Research Center. http://opensees.berkeley.edu
  • 28. Moffat R, Correia N, Pasten C (2016) Comparison of mean shear wave velocity of the top 30 m using downhole, MASW and bender elements methods. Obras y Proy. https://doi.org/10.4067/s0718-28132016000200001
  • 29. Olafsdottir EA (2014) Multichannel analysis of surface waves methods for dispersion analysis of surface wave data. University of Iceland, Reykjavik, Iceland
  • 30. Parhi PS, Sravanam SM, Balunaini U (2019) Dynamic characterization of coal ash lagoons using multichannel analysis of surface waves (Masw) technique. Earthq Geotech Eng Prot Dev Environ Constr Proc 7th Int Conf Earthq Geotech Eng 2019:4351-4358
  • 31. Park CB, Miller RD, Miura H (2002) Optimum field parameters of an MASW survey. Proc Soc Explor Geophys Japan Tokyo 22:23
  • 32. Paul S, Vishwakarma P, Amit P (2022) Estimation of normal, inverse, and irregular earth profile using different global optimization techniques from active MASW survey. Springer, Cham
  • 33. Phillips C, Hutchinson DJ, Cascante G (2004) Evaluation of horizontal homogeneity of geomaterials with the distance analysis of sur- face waves. Can Geotech J 41:212-226. https://doi.org/10.1139/t03-085
  • 34. Rahman MZ, Siddiqua S, Kamal ASMM (2015) Shear wave velocity estimation using multichannel analysis of surface wave and small scale microtremor measurement for seismic site characterization. In: 68th Canadian geotechnical conference and 7th Canadian permafrost conference Paper_ABS174
  • 35. Rao RV, Savsani VJ, Vakharia DP (2012) Teaching—learning-based optimization: an optimization method for continuous nonlinear large scale problems. Inf Sci 183:1-15
  • 36. Ribó R, Pasenau M, Escolano E, Ronda JSP, Gonzalez L, Rosa E (1999) GiD user manual. CIMNE, Barcelona
  • 37. Snieder R (1986) The influence of topography on the propagation and scattering of surface waves. Phys Earth Planet Inter 44:226-241. https://doi.org/10.1016/0031-9201(86)90072-5
  • 38. Song X, Tang L, Lv X, Fang H, Gu H (2012) Application of particle swarm optimization to interpret Rayleigh wave dispersion curves. J Appl Geophys 84:1-13
  • 39. Song X, Gu H, Tang L, Zhao S, Zhang X, Li L, Huang J (2015) Application of artificial bee colony algorithm on surface wave data. Comput Geosci 83:219-230
  • 40. Wang L, Xu Y, Xia J, Luo Y (2015) Effect of near-surface topography on high-frequency Rayleigh-wave propagation. J Appl Geophys 116:93-103. https://doi.org/10.1016/j.jappgeo.2015.02.028
  • 41. Wong HL (1982) Effect of surface topography on the diffraction of P, SV, and Rayleigh waves. Bull Seismol Soc Am 72:1167-1183. https://doi.org/10.1785/BSSA0720041167
  • 42. Xia J, Miller RD, Park CB (1999) Estimation of near-surface shearwave velocity by inversion of Rayleigh waves. Geophysics 64:691-700
  • 43. Xia J, Miller RD, Park CB, Hunter JA, Harris JB (2000) Comparing shear-wave velocity profiles from MASW with borehole measurements in unconsolidated sediments, Fraser River Delta, B.C. Canada J Environ Eng Geophys 5:1-13. https://doi.org/10.4133/jeeg5.3.1
  • 44. Xia J, Miller RD, Park CB, Hunter JA, Harris JB, Ivanov J (2002) Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements. Soil Dyn Earthq Eng 22:181-190
  • 45. Yamanaka H, Ishida H (1996) Application of genetic algorithms to an inversion of surface-wave dispersion data. Bull Seismol Soc Am 86:436-444
  • 46. Yilmaz O, Eser M, Sandikkaya A, Akkar S, Bakir S, Yilmaz T (2008) Comparison of shear-wave velocity-depth profiles from downhole and surface seismic experiments. In: 14th world conference on earthquake engineering, Beijing
  • 47. Zeng C, Xia J, Miller RD, Tso GP, Wang Z (2012) Numerical investigation of MASW applications in presence of surface topography. J Appl Geophys 84:52-60. https://doi.org/10.1016Zj.jappgeo.2012.06.004
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ea48f78-b746-43be-a283-f3dd730d7b5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.