PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Silesian Ridge in the light of petrological analyses and LA-ICP MS U-Pb analyses of the cohesive debrites from the Istebna Formation (Silesian Nappe, Outer Western Carpathians, Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Exotic clasts present in flysch deposits of the Western Outer Carpathians enable investigation and reconstruction of the eroded crystalline basement of the Silesian Ridge. The flysch rocks of the Istebna Formation (Jasnowice Member: Paleocene) in the Silesian Nappe contain magmatic and metamorphic clasts derived from the Silesian Ridge basement. The crystalline rock fragments acquired from cohesive debrites were analyzed petrographically and geochemically, and zircon and rutile crystals were subject to LA-ICP-MS U-Pb dating. Granitoid clasts yielded Meso-Variscan U-Pb zircon ages (325.7 and 330.6 Ma), with older (Neoproterozoic to Paleoproterozoic) inherited cores and eNd330 = –12.0 (TDM age of 1.98 Ga). The orthogneiss clast yielded a protolith age of 1635 Ma and fingerprint of thermal reworking at ~288 Ma. Zircon crystals from the detrital clasts yielded similar U-Pb zircon ages to the granitoid clasts (311.5 to 391 and 331 Ma). The rutile crystals from sandstone yielded concordia age of 344.7 Ma. Zircon crystals from paragneiss, interpreted as a granitoid envelope, yielded 238U/206Pb ages between 557 and 686 Ma and include an inherited core of age ~1207.4 ±33.8 Ma. Age data from exotic clasts and the detrital zircon and rutile fraction suggest the core part of the Silesian Ridge was a Neoproterozoic to Mesoproterozoic envelope intruded by Meso-Variscan granitoid plutons.
Rocznik
Strony
art. no. 20
Opis fizyczny
Bibliogr. 57 poz., fot., map., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology in Kraków, Faculty of Geology, Geophysics and Environmental Protection, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Earth Sciences, Będzińska 60, 41-200 Sosnowiec, Poland
  • AGH University of Science and Technology in Kraków, Faculty of Geology, Geophysics and Environmental Protection, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology in Kraków, Faculty of Geology, Geophysics and Environmental Protection, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Earth Sciences, Będzińska 60, 41-200 Sosnowiec, Poland
autor
  • Trinity College Dublin, Department of Geology, School of Natural Sciences, Dublin 2, Ireland
  • Trinity College Dublin, Department of Geology, School of Natural Sciences, Dublin 2, Ireland
Bibliografia
  • 1. Bracciali, L., Parrish, R.R., Horstwood, M.S.A., Condon, D.J., Najman, Y., 2013. U-Pb LA-(MC)-ICP-MS dating rutile: New reference materials and applications to sedimentary provenance. Chemical Geology, 347: 82-101.
  • 2. Budzyń, B., Dunkley, D.J., Kusiak, M.A., Poprawa, P., Malata, T., Skiba, M., Paszkowski, M., 2011. SHRIMP U-Pb zircon chronology of the Polish Western Outer Carpathians source areas. Annales Societatis Geologorum Poloniae, 81: 161-171.
  • 3. Burda, J., Woskowicz-Ślęzak, B., Klötzli, U., Gawęda, A., 2019. Cadomian protolith ages of exotic mega blocks from Bugaj and Andrychów (Western Outer Carpathians, Poland) and their paleogeographic significance. Geochronometria, 46: 25-36.
  • 4. Burtan, J., Nescieruk, P., Wójcik, A., 2016. Objaśnienia do Szczegółowej Mapy Geologicznej Polski w skali 1:50 000, arkusz Wisła (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 5. Chew, D.M., Petrus, J.A., Kamber, S., 2014. U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology, 363: 185-199.
  • 6. Chew, D., O'Sullivan, G., Caracciolo, L., Mark, C., Tyrrell, S., 2020. Sourcing the sand: accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis. Earth- Science Reviews, 202: 103093.
  • 7. Cieszkowski, M., Golonka, J., Ślączka, A., Waśkowska, A., 2012. Role of the olistostromes and olistoliths in tectonostratigraphic evolution of the Silesian Basin in the Outer Carpathians. Tectonophysics, 568-569: 248-265.
  • 8. Elíaš, M., Vašíček, Z., Skupien, P., 2003. Základní rysy pozdnějurske a spodnokřidove sedimentace ve slezské jednotce na české, územi (vnějši Západni Karpaty) (in Czech). Sbornik vědeckých. Prací Vysoké Školy bánské -TU, Řada horonicko-geologická, Monografie, 8: 117-126.
  • 9. Gawęda, A., Doniecki, T., Burda, J., Kohut, M., 2005. The petrogenesis of quartz-diorites from the Tatra Mountains (Central Western Carpathians): an example of magma hybridisati on. Neues Jahrbuch für Mineralogie Abhandlungen, 181: 95-109.
  • 10. Gawęda, A., Golonka, J., 2011. Variscan plate dynamics in the circum-Carpathian area. Geodinamica Acta, 24: 141-155.
  • 11. Gawęda, A., Golonka, J., Waśkowska, A., Szopa, K., Chew, D., Starzec, K., Wieczorek, A., 2019a. Neoproterozoic crystalline exotic clasts in the Polish Outer Carpathian flysch: remnants of the Proto-Carpathian continent? International Journal of Earth Sciences, 108: 1409-1427.
  • 12. Gawęda, A., Szopa, K., Włodyka, R., Burda, J., Crowley, Q., Sikorska, M., 2019b. Continuous magma mixing and cumulate separation in the High Tatra Mountains open system granitoid intrusion, Western Carpathians (Poland/Slovakia): a textural and geochemical study. Acta Geologica Polonica, 69: 549-570.
  • 13. Geroch, S. 1960. Microfaunal assemblages from the Cretaceous and Paleogene Silesian Unit in the Beskid Śląski Mts. (Western Carpathians) (in Polish with English summary). Biuletyn Instytutu Geologicznego, 153: 7-138.
  • 14. Golonka, J., Picha, F.J., 2006. Introduction. AAPG Memoir, 84: 1-9.
  • 15. Golonka, J., Krobicki, M., Oszczypko, N., Ślączka, A., Słomka, T., 2003. Geodynamic evolution and paleogeography of the Polish Carpathians and adjacent areas during Neo-Cimmerian and preceding events (latest Triassic-earliest Cretaceous). Geological Society Special Publications, 208: 137-158.
  • 16. Golonka, J., Krobicki, M., Matyszkiewicz, J., Olszewska, B., Ślączka, A., Słomka, T., 2005. Geodynamics of ridges and development of carbonate platform within the Carpathian realm in Poland. Slovak Geological Magazine, 11: 5-16.
  • 17. Golonka, J., Krobicki, M., Słomka, T., Oszczypko, N., Ślączka, A., 2006. Jurassic geodynamics of ridges within the Outer Carpathian realm in Po I and. Volumina Jurassica, 4: 42-43.
  • 18. Golonka, J., Ślączka, A., Waśkowska, A., Krobicki, M., Cieszkowski, M., 2013. Budowa geologiczna zachodniej części polskich Karpat zewnętrznych (in Polish). In: V Polish Sedimentology Conference POKOS 5'2013, Głębokomorska sedymentacja fliszowa - sedymentologiczne aspekty historii basenów karpackich (eds. M. Krobicki and A. Feldman-Olszewska), 16-19.05.2013, Żywiec, 11-62.
  • 19. Golonka, J., Waśkowska, A., Ślączka, A., 2019. The Western Outer Carpathians: origin and evolution. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 170: 229-254.
  • 20. Golonka, J., Gawęda, A., Waśkowska, A., 2021a. Carpathians. In: Encyclopedia of Geology, 2nd Ed. (eds. D. Alderon and S.A. Elias): 372-381. Elsevier, Amsterdam.
  • 21. Golonka, J., Gawęda, A., Waśkowska, A., Chew, D., Szopa, K., Foteini, D., 2021b. Tracing pre-Mesozoic tectonic sutures in the crystalline basement of the Protocarpathians: evidence from the exotic blocks from Subsilesian Nappe, Outer Western Carpathians, Poland. Minerals, 11: 571.
  • 22. Kennedy, A.K., Wotzlaw, J-F., Schaltegger, U., Crowley, J.L., Schmitz, M., 2014. Eocene zircon reference material for microanalysis of U-Th-Pb isotopes and trace elements. Canadian Mineralogist, 52: 409-421.
  • 23. Książkiewicz M. (ed), 1962. Geological Atlas of Poland, Stratigraphic and Facial Prob lems. Wyd. Geol., Warsaw.
  • 24. Książkiewicz, M., 1975. Bathymetry of the Carpathian flysch basin. Acta Geologica Polonica, 25: 309-368.
  • 25. Książkiewicz, M., 1977. Hypothesis of plate tectonics and the origin of the Carpathians. Annales Societatis Geologorum Poloniae, 47: 329-353.
  • 26. Liew, T.C., Hofmann, A.W., 1988. Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of Central Europe: Indications from a Nd and Sr isotopic study. Contributions to Mineralogy and Petrology, 98: 129-138.
  • 27. Ludwig, K.R., 2012. Isoplot/Ex, v. 3.75. Berkeley Geochronology Center Special Publication, 5.
  • 28. Mark, C., Cogne, N., Chew, D., 2016. Tracking exhumation and drainage divide migration of the Western Alps: a test of the apatite U-Pb thermochronometer as a detrital provenance tool. GSA Bulletin, 128: 1439-1460.
  • 29. Mazur, S., Aleksandrowski, P., Gągała, Ł., Krzywiec, P., Żaba, J., Gaidzik, K., Sikora, R., 2020. Late Paleozoic strike-slip tectonics versus oroclinal bending at the SW outskirts of Baltica: case of the Variscan belt's eastern end in Poland. International Journal of Earth Sciences, 109: 1133-1160.
  • 30. McDonough, W.F., Sun, S.S., 1995. The composition of the Earth. Chemical Geology, 120: 223-253.
  • 31. Middlemost, E.A.K., 1985. Magmas and Magmatic Rocks: an Introduction to Igneous Petrology. Longman Group Ltd., London, UK.
  • 32. Moyen, J.F., Laurent, O., Chelle-Michou, C., Couzinié, S., Vanderhaege, O., Zeh, A., Villaros, A., Gardien, V., 2017. Collision vs. subduction-related magmatism: two contrasting ways of grani te formation and implications for crustal growth. Lithos, 277: 154-177.
  • 33. O'Sullivan, G.J., Chew, D.M., Samson, S.D., 2016. Detecting magma-poororogens in the detrital record. Geology, 44: 871-874.
  • 34. Oszczypko, N. 2004. The structural position and tectonosedimentary evolution of the Polish Outer Carpathians. Przegląd Geologiczny, 52: 780-791.
  • 35. Oszczypko, N., 2006. Late Jurassic-Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland). Geological Quarterly, 50 (1): 169-194.
  • 36. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., Hergt, J., 2011. lolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26: 2508-2518.
  • 37. Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace elements discrimination diagram for the tectonic interpretation of granitic rocks. Journal of Petrology, 25: 956-983.
  • 38. Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58: 63-81.
  • 39. Petrus, J.A., Kamber, B.S., 2012. VizualAge: a novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostandards and Geoanalytical Research, 36: 247-270.
  • 40. Pointon, M.A., Cliff, R.A., Chew, D.M., 2012. The provenance of Western Irish Namurian Basin sedimentary strata inferred using detrital zircon U-Pb LA-ICP-MS geochronology. Geological Journal, 47: 77-98.
  • 41. Poprawa, P., Malata, T., Pecskay, Z., Banaś, M., Skulich, J., Paszkowski, M., Kusiak, M., 2004. Geochronology of the crystalline basement of the Western Outer Carpathians' sediment source area - preliminary data. Mineralogical Society of Poland - Special Papers, 24: 329-332.
  • 42. Rubatto, D., 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184: 123-138.
  • 43. Ryłko, W., 2019. Objaśnienia do Szczegółowej Mapy Geologicznej Polski w skali 1:50 000, arkusz Milówka (in Polish). Państwowy Instytut Geologiczny, Warszawa.
  • 44. Schmitt, A.K., Zack, T., 2012. High-sensitivity U-Pb rutile dating by secondary ion mass spectrometry (SIMS) with an O2+ primary beam. Chemical Geology, 332-333: 65-73.
  • 45. Slama, J., Kośler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Schaltegger, U., 2008. Plešovice zircon - a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249: 1-35.
  • 46. Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26: 207-221.
  • 47. Starzec, K., Golonka, J., Waśkowska, A., 2017. Zespół form skałkowych na Karolówce w Istebnej (Beskid Śląski, Zachodnie Karpaty Zewnętrzne) - godne ochrony stanowisko z unikatowym materiałem egzotycznym. (in Polish). Chrońmy Przyrodę Ojczystą, 73: 271-283.
  • 48. Strzeboński, P., 2005. Cohesive debrites of the Istebna Beds (Upper Senonian - Paleocene) West of the Skawa River (in Polish with English summary). Geologia: Kwartalnik Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie, 31: 201-224.
  • 49. Strzeboński, P., 2015. Late Cretaceous-Early Paleogene sandyto-gravelly debris flows and their sediments in the Silesian Basin of the Alpine Tethys (Western Outer Carpathians, Istebna Formation). Geological Quarterly, 59 (1): 195-214.
  • 50. Sun, W., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society Special Publications, 42: 313-345.
  • 51. Ślączka, A., Kruglow, S., Golonka, J., Oszczypko, N., Popadyuk, I., 2006. The general geology of the Outer Carpathians, Poland, Slovakia, and Ukraine. AAPG Memoir, 84: 221-258.
  • 52. Unrug, R., 1963. Istebna Beds - a fluxoturbidity formation in the Carpathian Flysch. Annales Societatis Geologorum Poloniae, 33: 49-92.
  • 53. Unrug, R., 1968. The Silesian cordillera as the source of clastic material of the flysch sandstone of the Beskid Śląski and Beskid Wyspowy ranges (Polish Western Carpathians) (in Polish with English summary). Annales Societatis Geologorum Poloniae, 38: 155-164.
  • 54. Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F.V., Spiegel, W., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards and Geoanalytical Research, 19: 1-23.
  • 55. Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J.,
  • Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Girard, J.-P., Greenwood, R.C., Hinton, R., Kita, N., Mason, P.R.D., Norman, M., Ogasawara, M., Piccoli, P.M., Rhede, D., Satoh, H., Schulz-Dobrick, B., Skar, O., Spicuzza, M.J., Terada, K., Tindle, A., Togashi, S., Vennemann, T., Xie, Q., Zheng, Y.-F., 2004. Further characterization of the 91500 zircon crystal. Geostandards and Geoanalytical Research, 28: 9-39.
  • 56. Winchester, J.A., Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343.
  • 57. Zack, T., Stockli, D.F., Luvizotto, G.L., Barth, M.G., Belousova, E., Wolfe, M.R., Hinton, R.W., 2011. In situ U-Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications. Contributions to Mineralogy and Petrology, 162: 515-530.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ea2ac8d-1831-404e-8180-add78b78141b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.