PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Classifying median nerves in carpal tunnel syndrome: Ultrasound image analysis

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rationale and objectives: Carpal tunnel syndrome (CTS) refers to a common median nerve pathology, which is related to an increased pressure in the fibrous/bone canal of the wrist. Ultrasound gained popularity recently as a useful tool for the accurate and repetitive diagnosis of carpal tunnel syndrome. The present study aimed to develop an objective, repetitive technique for assessing median nerves based on carpal tunnel ultrasound texture analysis. Material and methods: Sixty ultrasound images, including 30 images of swollen ‘‘symptomatic” median nerves and 30 normal ‘‘asymptomatic” median nerves, were used in this study. Narrow age group of patients were selected. They were recruited after positive nerve conduction study and with present clinical symptoms reviled on basis of interview and written questionnaire. Meticulous nerve area and echogenicity assessment were conducted in line with existing recommendations. Results: Using the feature-selection tool MaZda, an exhaustive search of the data space was conducted, and four texture features were found for which the classification was the most accurate. Images were classified using a support vector machine with a five-fold cross-verification in MATLAB. Evoked outcomes showed a 79% correct classification rate. Conclusion: Computer analysis of the image echogenicity of the median nerve presented confidence levels comparable to trusted evaluation techniques. Further, it is a promising tool for assessing the nerve’s status in CTS as approach of the CTS assessment free from subjectivity of examiner. The developed method enables nerve classification based on echogenicity that reflects the nerve composition changes not only subjective nerve area assessment.
Twórcy
  • Department of Diagnostic Imaging, Jagiellonian University Medical College, 19 Kopernika Street, 31–501 Krakow, Poland
  • Institute of Electronics, Łódź University of Technology, ul. Wolczanska 211/215, 90 924 Łódź , Poland
  • Institute of Electronics, Łódź University of Technology, ul. Wolczanska 211/215, 90 924 Łódź , Poland
Bibliografia
  • [1] Soubeyrand M, Melhem R, Protais M, Artuso, Crézé M. Anatomy of the median nerve and its clinical applications. Hand Surg Rehabil. 2019 Dec 6. pii: S2468-1229(19)30364-0.
  • [2] Pacek CA, Tang J, Goitz RJ, Kaufmann RA, Li ZM. Morphological analysis of the carpal tunnel. Hand 2010;5:77–81.
  • [3] Kiylioglu N, Akyildiz UO, Ozkul A, Akyol A. Carpal tunnel syndrome and ulnar neuropathy at the wrist: Comorbid disease or not? J Clin Neurophysiol 2011;28:520–3.
  • [4] Woods BI, Hilibrand AS. Cervical radiculopathy: epidemiology, etiology, diagnosis, and treatment. J Spinal Disord Tech 2015;28(5):E251–9. https://doi.org/10.1097/BSD.0000000000000284.
  • [5] de Krom MCTFM, Knipschild PG, Kester ADM, Thijs CT, Boekkooi PF, Spaans F. Carpal tunnel syndrome: prevalence in the general population. J Clin Epidemiol 1992;45:373–6.
  • [6] Chang KV, Mezian K, Naňka O, et al. Ultrasound imaging for the cutaneous nerves of the extremities and relevant entrapment syndromes: from anatomy to clinical implications. J Clin Med. 2018;7(11):457. Published 2018 Nov 21. doi:10.3390/jcm7110457.
  • [7] Park JJ, Choi JG, Son BC. Carpal tunnel syndrome caused by bifid median nerve in association with anomalous course of the flexor digitorum superficialis muscle at the wrist. Nerve 2017;3(1):21–3.
  • [8] Padua L, Coraci D, Erra C, et al. Carpal tunnel syndrome: clinical features, diagnosis, and management. Lancet Neurol 2016;15:1273–84.
  • [9] Tadjerbashi K, Ðkesson A, Atroshi I. Incidence of referred carpal tunnel syndrome and carpal tunnel release surgery in the general population: increase over time and regional variations. J Orthop Surg (Hong Kong) 2019;27(1). 2309499019825572.
  • [10] Burton CL, Chen Y, Chesterton LS, van der Windt DA. Trends in the prevalence, incidence and surgical management of carpal tunnel syndrome between 1993 and 2013: an observational analysis of UK primary care records. BMJ Open 2018;8(6) e020166.
  • [11] Ibrahim I, Khan WS, Goddard N, Smitham P. Carpal tunnel syndrome: a review of the recent literature. Open Orthop J 2012;6:69–76.
  • [12] Sonoo M, Menkes DL, Bland JDP, Burke D. Nerve conduction studies and EMG in carpal tunnel syndrome: Do they add value? Clin Neurophysiol Pract 2018;5(3):78–88.
  • [13] Fowler JR. Nerve conduction studies for carpal tunnel syndrome: gold standard or unnecessary evil? Orthopedics 2017;40:141–2.
  • [14] Bland JD. A neurophysiological grading scale for carpal tunnel syndrome. Muscle Nerve 2000;23:1280–3.
  • [15] Tu IT, Cheng YS, Mo PC, Hsu HY, Kuo LC, Jou IM, Su FC. Classifying hand sensorimotor functions of the chronic kidney disease patients using novel manual tactile test and pinch-holding-up activity. PLoS ONE 2019;14(7) e0219762.
  • [16] Seror P. Sonography and electrodiagnosis in carpal tunnel syndrome diagnosis, an analysis of the literature. Eur J Radiol 2008;67:146–52.
  • [17] Domanasiewicz A, Koszewicz M, Jabtecki J. Comparison of the diagnostic values of ultrasonography and neurography in carpal tunnel syndrome. Neurol Neurochir Pol 2009;43:433–8.
  • [18] Tagliafico A, Martinoli C. Reliability of side-to-side sonographic cross-sectional area measurements of upper extremity nerves in healthy volunteers. J Ultrasound Med 2013;32:457–62.
  • [19] Beekman R, Visser LH. Sonography in the diagnosis of carpal tunnel syndrome: a critical review of the literature. Muscle Nerve 2003;27:26–33.
  • [20] Su PH, Chen WS, Wang TG, Liang HW. Correlation between subclinical median neuropathy and the cross-sectional area of the median nerve at the wrist. Ultrasound Med Biol 2013;39:975–80.
  • [21] Al-Hashel JY, Rashad HM, Nouh MR, Amro HA, Khuraibet AJ, Shamov T, Tzvetanov P, Rousseff RT. Sonography in carpal tunnel syndrome with normal nerve conduction studies. Muscle Nerve 2015;51:592–7.
  • [22] Möller I, Miguel M, Bong DA, Zaottini F, Martinoli C. The peripheral nerves: update on ultrasound and magnetic resonance imaging. Clin Exp Rheumatol 2018;36(Suppl 114(5)):145–58.
  • [23] Torres-Costoso A, Martinez-Vizcaino V, Alvarez-Bueno C, Ferri-Morales A, Cavero-Redondo I. Accuracy of ultrasonography for the diagnosis of carpal tunnel syndrome: a systematic review and meta-analysis. Arch Phys Med Rehabil 2018;99. https://doi.org/10.1016/j.apmr.2017.08.489. 758–765 e10.
  • [24] Tai TW, Wu CY, Su FC, Chern TC, Jou IM. Ultrasonography for diagnosing carpal tunnel syndrome: a meta-analysis of diagnostic test accuracy. Ultrasound Med Biol 2012;38:1121–8.
  • [25] Miyamoto H, Morizaki Y, Kashiyama T, Tanaka S. Grey-scale sonography and sonoelastography for diagnosing carpal tunnel syndrome. World J Radiol 2016;8:281–7.
  • [26] Mhoon JT, Juel VC, Hobson-Webb LD. Median nerve ultrasound as a screening tool in carpal tunnel syndrome: correlation of cross-sectional area measures with electrodiagnostic abnormality. Muscle Nerve 2012;46 (6):871–8. https://doi.org/10.1002/mus.23426.
  • [27] Elnady B, Rageh EM, Ekhouly T, et al. Diagnostic potential of ultrasound in carpal tunnel syndrome with different etiologies: correlation of sonographic median nerve measures with electrodiagnostic severity. BMC Musculoskelet Disord. 2019;20(1):634. Published 2019 Dec 29. doi:10.1186/s12891-019-3010-5.
  • [28] Wu WT, Chang KV, Mezian K, Naňka O, Lin CP, Özçakar L. Basis of shoulder nerve entrapment syndrome: an ultrasonographic study exploring factors influencing crosssectional area of the suprascapular nerve. Front Neurol. 2018;9:902. Published 2018 Oct 23. doi:10.3389/fneur.2018.00902.
  • [29] Hobson-Webb LD, Massey JM, Juel VC, et al. The ultrasonographic wrist-to-forearm median nerve area ratio in carpal tunnel syndrome. Clin Neurophysiol 2008;119:1353–7.
  • [30] Klauser AS, Halpern EJ, De Zordo T, Feuchtner GM, Arora R, Gruber J, Martinoli C, Löscher WN. Carpal tunnel syndrome assessment with US: value of additional cross-sectional area measurements of the median nerve in patients versus healthy volunteers. Radiology 2009;250(1):171–7.
  • [31] Steinkohl F, Loizides A, Gruber L, et al. Ultrasonography for the diagnosis of Carpal Tunnel Syndrome in diabetic patients: missing the mark? Ultraschall zur Diagnose des Karpaltunnelsyndroms bei Patienten mit Diabetes: Treffen wir ins Ziel? Rofo 2019;191(2):117–21. https://doi.org/10.1055/a-0639-5713.
  • [32] Drăghici NC, Tămaș MM, Leucuța DC, et al. Diagnosis accuracy of carpal tunnel syndrome in diabetic neuropathy. Medicina (Kaunas). 2020;56(6):E279. Published 2020 Jun 5. doi:10.3390/medicina56060279.
  • [33] Mallouhi A, Pultzl A, Trieb T, Piza H, Bodner G. Predictors of carpal tunnel syndrome: accuracy of gray-scale and color Doppler sonography. AJR Am J Roentgenol 2006;186:1240–5.
  • [34] Gonzalez-Suarez CB, Fidel BC, Cabrera JTC, Dela Cruz FC, Gesmundo MVT, Regala CFG, Saratan R, Suarez CG, Grimmer K. Diagnostic accuracy of ultrasound parameters in carpal tunnel syndrome: additional criteria for diagnosis. J Ultrasound Med 2019;38:3043–52. https://doi.org/10.1002/jum.15012.
  • [35] Ozsoy-Unubol T, Bahar-Ozdemir Y, Yagci I. Diagnosis and grading of carpal tunnel syndrome with quantitative ultrasound: Is it possible? J Clin Neurosci 2020;75:25–9. https://doi.org/10.1016/j.jocn.2020.03.044.
  • [36] Ooi CC, Wong SK, Tan AB, et al. Diagnostic criteria of carpal tunnel syndrome using high-resolution ultrasonography: correlation with nerve conduction studies. Skeletal Radiol 2014;43:1387–94.
  • [37] Kaymak B, Özçakar L, Çetin A, Çetin MC, Akıncı A, Hasçelik Z. A comparison of the benefits of sonography and electrophysiologic measurements as predictors of symptom severity and functional status in patients with carpal tunnel syndrome. Arch Phys Med Rehabil 2008;89:743–8.
  • [38] Obuchowicz R, Ambrozinski L, Kohut P. Influence of load and transducer bandwidth on the repeatability of in vivo tendon stiffness evaluation using shear wave elastography. J Diagnostic Med Sonography 2020. https://doi.org/10.1177/8756479320928999.
  • [39] Wong SM, Griffith JF, Hui AC, Lo SK, Fu M, Wong KS. Carpal tunnel syndrome: diagnostic usefulness of sonography. Radiology 2004;232:93–9.
  • [40] Ramos-Zúñiga R, Garcıá-Mercado CJ, Segura-Durán I, Zepeda-Gutiérrez LA. Efficacy of keyhole approach to carpal tunnel syndrome under ambulatory strategy. Neurol Res Int 2017;2017:3549291.
  • [41] Hunderfund AN, Boon AJ, Mandrekar JN, Sorenson EJ. Sonography in carpal tunnel syndrome. Muscle Nerve 2011;44:485–91.
  • [42] Mizia E, Tomaszewski KA, Lis GJ, Goncerz G, Kurzydło W. The use of computer-assisted image analysis in measuring the histological structure of the human median nerve. Folia Morphol (Warsz) 2012;71:82–5.
  • [43] Tagliafico A, Tagliafico G, Martinoli C. Nerve density: a new parameter to evaluate peripheral nerve pathology on ultrasound.Preliminary study. Ultrasound Med Biol 2010;36:1588–93.
  • [44] Tagliafico AS. Peripheral nerve imaging: not only crosssectional area. World J Radiol 2016;8:726–8.
  • [45] Suk JI, Walker FO, Cartwright MS. Ultrasonography of peripheral nerves. Curr Neurol Neurosci Rep 2013;13:328.
  • [46] Hajek M, Dezortova M, Materka A, Lerski R. Texture analysis for magnetic resonance imaging. Prague: Med4Publishing; 2006.
  • [47] Depeursinge A, Al-Kadi OS, Mitchell JR. Biomedical texture analysis. Fundamentals, tools and challenges. London: Elsevier; 2017.
  • [48] Obuchowicz R, Nurzynska K, Obuchowicz B, Urbanik A, Piórkowski A. Use of texture feature maps for the refinement of information derived from digital intraoral radiographs of lytic and sclerotic lesions. Appl Sci 2019;9 (15):2968.
  • [49] Chrzanowski L, Drozdz J, Strzelecki M, Krzeminska-Pakula M, Jedrzejewski K, Kasprzak J. Application of neural networks for the analysis of histological and ultrasonic aortic wall appearance–An in-vitro tissue characterization study. Ultrasound Med Biol 2008;34:103–13.
  • [50] Julesz B. Experiments in the visual perception of texture. Sci Am 1975;232(4):34–43.
  • [51] Lew HL, Date ES, Pan SS. Sensitivity, specificity, and variability of nerve conduction velocity measurements in carpal tunnel syndrome. Arch Phys Med Rehabil 2005;86:12–6.
  • [52] El Miedany YM, Aty SA, Ashour S. Ultrasonography versus nerve conduction study in patients with carpal tunnel syndrome: substantive or complementary tests? Rheumatology (Oxford) 2004;43(7):887–95.
  • [53] Karadağ YS, Karadağ O, Ciçekli E, Oztürk S, Kiraz S, Ozbakir S, Filippucci E, Grassi W. Severity of Carpal tunnel syndrome assessed with high frequency ultrasonography. Rheumatol Int 2010;30(6):761–5.
  • [54] Bang M, Kim JM, Kim HS. The usefulness of ultrasonography to diagnose the early stage of carpal tunnel syndrome in proximal to the carpal tunnel inlet: a prospective study. Medicine (Baltimore) 2019;98(26) e16039.
  • [55] Szczypinski PM, Strzelecki M, Materka A, Klepaczko A. MaZda—A software package for image texture analysis. Comput Methods Programs Biomed 2009;94:66–76.
  • [56] Strzelecki M, Szczypinski P, Materka A, Klepaczko A. A software tool for automatic classification and segmentation of 2D/3D medical images. Nucl Instrum Methods Phys Res A 2013;702:137–40.
  • [57] Kuncheva LI. Combining pattern classifiers: methods and algorithms. New Jersey: John Wiley and Sons; 2014.
  • [58] Haralick R, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern 1973;3:610–21.
  • [59] Atroshi I, Gummesson C, Johnsson R, Ornstein E, Ranstam J, Rosén I. Prevalence of carpal tunnel syndrome in a general population. JAMA 1999;282:153–8.
  • [60] Milone MT, Karim A, Klifto CS, Capo JT. Analysis of expected costs of carpal tunnel syndrome treatment strategies. Hand 2017;14:317–23.
  • [61] Fujimoto K, Kanchiku T, Kido K, Imajo Y, Funaba M, Taguchi T. Diagnosis of severe carpal tunnel syndrome using nerve conduction study and ultrasonography. Ultrasound Med Biol 2015;41:2575–80.
  • [62] Hirani S. A study to further develop and refine carpal tunnel syndrome (CTS) nerve conduction grading tool. BMC Musculoskeletal Disorders 2019;20(1):581.
  • [63] Chen IJ, Chang KV, Lou YM, Wu WT, Özçakar L. Can ultrasound imaging be used for the diagnosis of carpal tunnel syndrome in diabetic patients? A systemic review and network meta-analysis. J Neurol 2020;267(7):1887–95. https://doi.org/10.1007/s00415-019-09254-8.
  • [64] Watanabe T, Ito H, Morita A, et al. Sonographic evaluation of the median nerve in diabetic patients: comparison with nerve conduction studies. J Ultrasound Med 2009;28 (6):727–34. https://doi.org/10.7863/jum.2009.28.6.727.
  • [65] Billakota S, Hobson-Webb LD. Standard median nerve ultrasound in carpal tunnel syndrome: a retrospective review of 1,021 cases. Clin Neurophysiol Pract 2017;1(2):188–91.
  • [66] Chiou HJ, Chou YH, Chiou SY, Liu JB, Chang CY. Peripheral nerve lesions: role of high-resolution. US Radiographics 2003;23.
  • [67] Jablecki CK, Andary MT, Floeter MK, et al. Practice parameter: electrodiagnostic studies in carpal tunnel syndrome. Report of the American Association of Electrodiagnostic Medicine, American Academy of Neurology, and the American Academy of Physical Medicine and Rehabilitation. Neurology 2002;58:1589–92.
  • [68] Werner RA, Andary M. Carpal tunnel syndrome: pathophysiology and clinical neurophysiology. Clin Neurophysiol 2002;113(9):1373–81.
  • [69] Fowler JR, Munsch M, Tosti R, Hagberg WC, Imbriglia JE. Comparison of ultrasound and electrodiagnostic testing for diagnosis of carpal tunnel syndrome: study using a validated clinical tool as the reference standard. J Bone Joint Surg Am 2014;96(17) e148.
  • [70] Jackson DA, Clifford JC. Electrodiagnosis of mild carpal tunnel syndrome. Arch Phys Med 668 Rehabil 1989;70:199–204.
  • [71] Uzar E, Tamam Y, Acar A, et al. Sensitivity and specificity of terminal latency index and residual latency in the diagnosis of carpal tunnel syndrome. Eur Rev Med Pharmacol Sci 2011;15(9):1078–84.
  • [72] Brüske J, Bednarski M, Grzelec H, Zyluk A. The usefulness of the Phalen test and the Hoffmann-Tinel sign in the diagnosis of carpal tunnel syndrome. Acta Orthop Belg 2002;68:141–5.
  • [73] Naranjo A, Ojeda S, Mendoza D, Francisco F, Quevedo JC, Erausquin C. What is the diagnostic value of ultrasonography compared to physical evaluation in patients with idiopathic carpal tunnel syndrome? Clin Exp Rhemutatol 2007;25:853–9.
  • [74] Wipperman J, Goerl K. Carpal tunnel syndrome: diagnosis and management. Am Fam Physician 2016;94(12):993–9.
  • [75] Cudlip SA, Howe FA, Clifton A, Schwartz MS, Bell BA. Magnetic resonance neurography studies of the median nerve before and after carpal tunnel decompression. J Neurosurg 2002;96:1046–51.
  • [76] Ng AWH, Griffith JF, Tong CSL, Law EKC, Tse WL, Wong CWY, Ho PC. MRI criteria for diagnosis and predicting severity of carpal tunnel syndrome. Skeletal Radiol 2020;49(3):397–405.
  • [77] Draghici NC, Tămaș MM, Leucuța DC, et al. Diagnosis accuracy of carpal tunnel syndrome in diabetic neuropathy. Medicina (Kaunas). 2020;56(6):E279. Published 2020 Jun 5. doi:10.3390/medicina56060279.
  • [78] Borire AA, Hughes AR, Lueck CJ, Colebatch JG, Krishnan AV. Sonographic differences in carpal tunnel syndrome with normal and abnormal nerve conduction studies. J Clin Neurosci 2016;34:77–80.
  • [79] Tai-Tzung Kuo, Ming-Ru Lee, Yin-Yin Liao, Jiann-Perng Chen, Yen-Wei Hsu, Chih-Kuang Yeh, Nader N. Pouratian. Assessment of median nerve mobility by ultrasound dynamic imaging for diagnosing Carpal Tunnel Syndrome, PLoS One. 2016; 11(1): e0147051.
  • [80] Dejaco C, Stradner M, Zauner D, et al. Ultrasound for diagnosis of carpal tunnel syndrome: comparison of different methods to determine median nerve volume and value of power Doppler sonography. Ann Rheum Dis 2013;72:1934–9.
  • [81] Tsai N-W, Lee L-H, Huang C-R, ChangW-N,Wang H-C, Lin Y-J, Lin W-C, Lin T-K, Cheng B-C, Yu-Jih S, Kung C-T, Chen S-F. The diagnostic value of ultrasonography in carpal tunnel syndrome: a comparison between diabetic and non-diabetic patients. BMC Neurol 2013;13:65.
  • [82] T-K, Cheng B-C, Yu-Jih S, Kung C-T, Chen S-F. The diagnostic value of ultrasonography in carpal tunnel syndrome: a comparison between diabetic and non-diabetic patients. BMC Neurol. 2013;13:65.
  • [83] Cartwright MS, Hobson-Webb LD, Boon AJ, Alter KE, Hunt CH, Flores VH, Werner RA, Shook SJ, Thomas TD, Primack SJ, Walker FO. Evidence-based guideline: neuromuscular ultrasound for the diagnosis of carpal tunnel syndrome. Muscle Nerve 2012;46(2):287–93.
  • [84] Roll SC, Evans KD, Li X, Freimer M, Sommerich CM. Screening for carpal tunnel syndrome using sonography. J Ultrasound Med 2011;30(12):1657–67. https://doi.org/10.7863/jum.2011.30.12.1657.
  • [85] Rahmani M, Ghasemi Esfe AR, Vaziri-Bozorg SM, Mazloumi M, Khalilzadeh O, Kahnouji H. The ultrasonographic correlates of carpal tunnel syndrome in patients with normal electrodiagnostic tests [published correction appears in, Radiol Med. 2011;116(3):503.
  • [86] Altinok T, Baysal O, Karakas HM, et al. Ultrasonographic assessment of mild and moderate idiopathic carpal tunnel syndrome. Clin Radiol 2004;59:916–25.
  • [87] Tagliafico A, Resmini E, Nizzo R, Derchi LE, Minuto F, Giusti M, Martinoli C, Ferone D. The pathology of the ulnar nerve in acromegaly. Eur J Endocrinol 2008;159:369–73.
  • [88] Li X, Li JW, Ho AM, Karmakar MK. Age-related differences in the quantitative echo texture of the median nerve. J Ultrasound Med 2015;34:797–804.
  • [89] Alkhatib M, Hafiane A, Tahri O, Vieyres P, Delbos A. Adaptive median binary patterns for fully automatic nerves tracking in ultrasound images. Comput Methods Programs Biomed 2018;160:129–40.
  • [90] Byra M, Wan L, Wong JH, Du J, Shah SB, Andre MP, Chang EY. Quantitative ultrasound and B-mode image texture features correlate with collagen and myelin content in human ulnar nerve fascicles. Ultrasound Med Biol 2019;45:10–40.
  • [91] Byra M, Hentzen E, Du J, Andre M, Chang EY, Shah S. Assessing the performance of morphologic and echogenic features in median nerve ultrasound for carpal tunnel syndrome diagnosis. J Ultrasound Med 2020;39(6):1165–74. https://doi.org/10.1002/jum.15201.
  • [92] Yao B, Gan K, Lee A, Roll SC. Comparing shape categorization to circularity measurement in the evaluation of median nerve compression using sonography. J Diagn Med Sonogr 2020. https://doi.org/10.1177/8756479319898471.
  • [93] Piorkowski, A. A statistical dominance algorithm for edge detection and segmentation of medical images. in: E. Pieôtka, P. Badura, J. Kawa, W. Wieclawek (Eds.), Information Technologies in Medicine, AISC, Springer, Switzerland, 2016;471:3–14.
  • [94] Chang KV, Wu WT, Chen IJ, Lin CY. Strain ratio of ultrasound elastography for the evaluation of tendon elasticity. Korean J Radiol 2020;21(3):384–5. https://doi.org/10.3348/kjr.2019.0737.
  • [95] Zhang S, Wang F, Ke S, et al. The effectiveness of ultrasound-guided steroid injection combined with miniscalpel-needle release in the treatment of carpal tunnel syndrome vs. steroid injection alone: a randomized controlled study. Biomed Res Int. 2019;2019:9498656. Published 2019 Feb 24. doi:10.1155/2019/9498656.
  • [96] Wang JC, Chang KV, Wu WT, Han DS, Özçakar L. Ultrasound-guided standard vs dual-target subacromial corticosteroid injections for shoulder impingement syndrome: a randomized controlled trial. Arch Phys Med Rehabil 2019;100(11):2119–28. https://doi.org/10.1016/j. apmr.2019.04.016.
  • [97] Ming-Huwi H, Cheng-Wei Y, Yung-Nien S, Tai-Hua Y. DEEPNERVE: A new convolutional neural network for the localization and segmentation of the median nerve in ultrasound image sequences. Ultrasound Med Biol 2020;46 (9):2439–52.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ea29ea3-71d3-434b-b809-75713a2d66dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.