PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computationally Efficient Two-Objective Optimization of Compact Microwave Couplers through Corrected Domain Patching

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Finding an acceptable compromise between various objectives is a necessity in the design of contemporary microwave components and circuits. A primary reason is that most objectives are at least partially conflicting. For compact microwave structures, the design trade-offs are normally related to the circuit size and its electrical performance. In order to obtain comprehensive information about the best possible trade-offs, multi-objective optimization is necessary that leads to identifying a Pareto set. Here, a framework for fast multi-objective design of compact micro-strip couplers is discussed. We use a sequential domain patching (SDP) algorithm for numerically efficient handling of the structure bandwidth and the footprint area. Low cost of the process is ensured by executing SDP at the low-fidelity model level. Due to its bi-objective implementation, SDP cannot control the power split error of the coupler, the value of which may become unacceptably high along the initial Pareto set. Here, we propose a procedure for correction of the S-parameters’ characteristics of Pareto designs. The method exploits gradients of power split and bandwidth estimated using finite differentiation at the patch centres. The gradient data are used to correct the power split ratio while leaving the operational bandwidth of the structure at hand intact. The correction does not affect the computational cost of the design process because perturbations are pre-generated by SDP. The final Pareto set is obtained upon refining the corrected designs to the high-fidelity EM model level. The proposed technique is demonstrated using two compact microstrip rat-race couplers. Experimental validation is also provided.
Rocznik
Strony
139--157
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Reykjavik University, Engineering Optimization & Modeling Center, School of Science and Engineering, 101 Reykjavik, Iceland
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Reykjavik University, Engineering Optimization & Modeling Center, School of Science and Engineering, 101 Reykjavik, Iceland
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Kurgan, P., Filipcewicz, J., Kitlinski, M. (2012). Development of a compact microstrip resonant cel aimed at efficient microwave component size reduction. IET Microwaves, Ant. Prop., 6(12), 1291-1298.
  • [2] Tseng, C.H., Chang, C.L. (2012). A rigorous design methodology for compact planar branch-line and rat-race couplers with asymmetrical T-structures. IEEE Trans. Microwave Theory Tech., 60(7), 2085-2092.
  • [3] Salari, M.A., Manoochehri, O., Abbasiniazare, S. (2013). Miniaturized microstrip ring hybrid with defected microstrip structure. Microw. Opt. Tech. Lett., 55(10), 2245-2248.
  • [4] Guo, L., Wang, S., Chen, X., Parini, C.G. (2010). Study of compact antenna for UWB applications. Electronics Lett., 46(2), 115-116.
  • [5] Gautam, A.K., Yadav, S., Kanaujia, B.K. (2013). A CPW-fed compact UWB microstrip antenna. IEEE Ant. Wireless Prop. Lett., 12, 151-154.
  • [6] Xiao, S., Wang, B.Z., Shao, W., Zhang, Y. (2005). Bandwidth-enhancing ultralow-profile compact patch antenna. IEEE Trans. Ant. Prop., 53(11), 3443-3447.
  • [7] Ahn, H.R., Bumman, K. (2008). Toward integrated circuit size reduction. IEEE Microw. Mag., 9(1), 65-75.
  • [8] Sani, A., Alomainy, A., Palikaras, G., Nechayev, Y., Yang. H., Parini, C., Hall, P.S. (2010). Experimental characterization of UWB on-body radio channel in indoor environment considering different antennas. IEEE Trans. Ant. Prop., 58(1), 238-241.
  • [9] Ning, H. (2013). Unit and ubiquitous internet of things. CRC Press.
  • [10] Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M. (2015). Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347-2376.
  • [11] Koziel, S., Bekasiewicz, A., Kurgan, P. (2015). Rapid multi-objective simulation-driven design of compact microwave circuits. IEEE Microwave Wireless Comp. Letters, 25(5), 277-279.
  • [12] Koziel, S., Bekasiewicz, A., Kurgan, P., Bandler, J.W. (2015). Rapid multi-objective design optimization of compact microwave couplers by means of physics-based surrogates. IET Microwaves, Ant. Prop., 10(5), 479-486.
  • [13] Liao, S.S., Sun, P.T., Chin, N.C., Peng, J.T. (2005). A novel compact-size branch-line coupler. IEEE Microw. Wireless Comp. Lett., 15(9), 588-590.
  • [14] Xu, H.X., Wang, G.M., Lu, K. (2011). Microstrip rat-race couplers. IEEE Microw. Mag., 12(4), 117-129.
  • [15] Jung, C., Negra, R., Ghannouchi, F.M. (2008). A design methodology for miniaturized 3-dB branch-line hybrid couplers using distributed capacitors printed in the inner area. IEEE Trans. Microw. Theory Techn., 56(12), 2950-2953.
  • [16] Kurgan, P., Kitlinski, M. (2011). Doubly miniaturized rat-race hybrid coupler. Microwave Opt. Tech. Lett., 53(6), 1242-1244.
  • [17] Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, H.M., Madsen, K., Søndergaard, J. (2004). Space mapping: the state of the art. IEEE Trans. Microwave Theory Tech., 52(1), 337-361.
  • [18] Koziel, S., Ogurtsov, S. (2014). Antenna design by simulation-driven optimization. Surrogate-based approach. Springer.
  • [19] Koziel, S., Yang, X.S., Zhang, Q.J. (eds.), (2013). Simulation-driven design optimization and modeling for microwave engineering . Imperial College Press.
  • [20] El Sabbagh, M.A., Bakr, M.H., Bandler, J.W. (2006). Adjoint higher order sensitivities for fast full-wave optimization of microwave filters. IEEE Trans. Microw Theory Tech., 54, 3339-3351.
  • [21] Bakr, M.H., Nikolova, N.K. (2004). An adjoint variable method for time-domain transmission-line modeling with fixed structured grids. IEEE Trans. Microwave Theory Tech., 52(2), 554-559.
  • [22] Khalatpour, A., Amineh, R.K., Cheng, Q.S., Bakr, M.H., Nikolova, N.K., Bandler, J.W. (2011). Accelerating space mapping optimization with adjoint sensitivities. IEEE Microwave Wireless Comp. Lett., 21(6), 280-282.
  • [23] Bekasiewicz, A., Koziel, S. (2015). Efficient multi-fidelity design optimization of microwave filters using adjoint sensitivity. Int. J. RF Microwave CAE, 25(2), 178-183.
  • [24] Yeung, S.H., Man, K.F. (2011). Multiobjective optimization. IEEE Microw. Mag., 12(6), 120-133.
  • [25] Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. NY: Wiley.
  • [26] Kuwahara, Y. (2005). Multiobjective Optimization Design of Yagi-Uda Antenna. IEEE Trans. Ant. Prop., 53(6), 1984-1992.
  • [27] Chamaani, S., Abrishamian, M.S., Mirtaheri, S.A. (2010). Time-domain design of UWB Vivaldi antenna array using multiobjective particle swarm optimization. IEEE Ant. Wireless Prop. Lett., 9, 666-669.
  • [28] Jin, N., Rahmat-Samii, Y. (2007). Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations. IEEE Trans. Ant. Prop., 55(3), 556-567.
  • [29] Goudos, S.K., Zaharis, Z.D., Kampitaki, D.G., et.al. (2009). Pareto optimal design of dual-band base station antenna arrays using multi-objective particle swarm optimization with fitness sharing. IEEE Trans. on Magn., 45, 1522-1525.
  • [30] Koziel, S., Bekasiewicz, A., Kurgan, P. (2015). Rapid multi-objective simulation-driven design of compact microwave circuits. IEEE Microwave Wireless Comp. Lett., 25(5), 277-279.
  • [31] Koziel, S., Bekasiewicz, A., Zieniutycz, W. (2014). Expedited EM-driven multi-objective antenna design in highly-dimensional parameter spaces. IEEE Ant. Wireless Prop. Lett., 13, 631-634.
  • [32] Koziel, S., Bekasiewicz, A. (2015). Fast multiobjective optimization of narrow-band antennas using RSA models and design space reduction. IEEE Ant. Wireless Prop. Lett., 14, 450-453.
  • [33] Koziel, S., Ogurtsov, S. (2013). Multi-objective design of antennas using variable-fidelity simulations and surrogate models. IEEE Trans. Ant. Prop., 61(12), 5931-5939.
  • [34] Koziel, S., Bekasiewicz, A. (2016). Multi-objective antenna design by means of sequential domain patching. IEEE Ant. Wireless Prop. Lett., 15, 1089-1092.
  • [35] Bekasiewicz, A., Koziel, S., Pankiewicz, B. (2015). Accelerated simulation-driven design optimization of compact couplers by means of two-level space mapping. IET Microwaves, Ant. Prop., 9(7), 618-626.
  • [36] CST Microwave Studio, ver. 2015, CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany, 2015.
  • [37] Tseng, C.H., Chen, H.J. (2008). Compact rat-race coupler using shunt-stub-based artificial transmission lines. IEEE Microw. Wireless Comp. Lett., 18(11), 734-736.
  • [38] Kotinis, M. (2010). A particle swarm optimizer for constrained multi-objective engineering design problems. Eng. Optimization, 42(10), 907-926.
  • [39] Al-Baity, H., Meshoul, S., Kaban, A. (2012). Constrained multi-objective optimization using a quantum behaved particle swarm. Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.). Int. Conf. Neural Information Processing, 456-464.
  • [40] Feliot, P., Bect, J., Vazquez, E. (2017). A Bayesian approach to constrained single- and multi-objective optimization. J. Global Opt., 67(1), 1-37.
  • [41] Martinez-Frutos, J., Herrero-Perez, D. (2016). Kriging-based infill sampling criterion for constraint handling in multi-objective optimization. J. Global Opt ., 64(1), 97-115.
  • [42] Hussein, R., Deb, K. (2016). A generative kriging surrogate model for constrained and unconstrained multi-objective optimization. Proc. Genetic Evolutionary Comp. Conf., 573-580.
  • [43] Bekasiewicz, A., Koziel, S., Leifsson, L. (2016). Sequential domain patching for computationally feasible multi-objective optimization of expensive electromagnetic simulation models. Procedia Comp. Sci., 80, 1093-1102.
  • [44] Koziel, S., Bekasiewicz, A. (2016). Multi-objective optimization microwave couplers using corrected domain patching. European Microwave Conference , 1-4, London.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ea24ae7-9638-4f4b-8ab7-26d15c871dc5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.