Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Charakterystyka włókien ketmii szczawiowej (Hibiscus sabdariffa L.) jako potencjalnego wzmocnienia kompozytów polimerowych
Języki publikacji
Abstrakty
Recently, in line with rising environmental concerns, researchers are now replacing synthetic fibres with natural ones as the main component in composites. Natural fibres are preferred to synthetic fibres because of several advantages such as biodegradable, light weight, low cost and good mechanical properties. Roselle is one of the plants found to be suitable to be used to produce natural fibres. In this work, we analysed the physical, thermal and mechanical characteristics of roselle fibre. Roselle fibre has good physical properties which lead to the dimensional stability of the composite product. The result obtained indicated that the moisture content of roselle fibre is 10.9%, while water absorption is 286.5%. Thermal gravimetric analysis (TGA) was conducted to understand the thermal stability of roselle fibre at high temperature. The results show that the initial degradation of roselle fibre starts at 225 °C and completes the decomposition of the lignocellulosic component at 400 °C. A tensile test was conducted to investigate the mechanical properties of roselle fibre. The tensile strength of roselle fibre is 130-562 MPa. On the basis of the properties of roselle fibres obtained, we concluded that roselle fibre is one of the good natural fibres that can be used as reinforced material for the manufacturing of polymer composites for different applications, while at the same time saving the cost required to manage the agro waste.
Ketmia szczawiowa jest jedną z roślin o której sądzi się, że może być przydatna do produkcji włókien naturalnych. W pracy przeanalizowano fizyczne, termiczne i mechaniczne właściwości włókien z ketmii szczawiowej. Ich dobre właściwości fizyczne przyczyniają się do wymiarowej stabilności kompozytu. Badania wykazały, że zawartość wilgoci wynosi 10.9%, podczas gdy absorpcja wody 286.5%. Analizę TGA przeprowadzono dla wykazania stabilności termicznej w wysokich temperaturach. Wyniki wykazały, że początkowa degradacja włókien zaczyna się przy 225 °C, a całkowity rozkład składników ligninocelulozowych występuje przy 400 °C. Stwierdzono, że wytrzymałość włókien na rozrywanie wynosi 130 – 562 MPa. Na podstawie analizy właściwości włókien ketmii szczawiowej można wnioskować, że włókna te są dobrymi gatunkowo włóknami naturalnymi dla wzmacniania kompozytów polimerowych przeznaczonych dla różnych zastosowań, a jednocześnie ich przerób pozwala na oszczędności przy utylizacji odpadów.
Czasopismo
Rocznik
Strony
23--30
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, UPM Serdan, Malaysia
- Department of Material and Structure, UniversitiTeknikal Malaysia Melaka, Durian Tunggal, Malaysia
autor
- Department of Aerospace Engineering, Universiti Putra Malaysia, UPM Serdang, Malaysia
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang, Malaysia
autor
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang, Malaysia
autor
- Department of Aerospace Engineering, Universiti Putra Malaysia, UPM Serdang, Malaysia
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdan, Malaysia
- Aerospace Manufacturing Research Centre, Universiti Putra Malaysia, UPM Serdang, Malaysia
autor
- Section of Polymer Engineering Technology, Institute of Chemical & Bioengineering Technology (UniKL-MICET), Universiti Kuala Lumpur-Malaysian, Alor Gajah, Malaysia
Bibliografia
- 1. Aji IS, Sapuan SM, Zainudin ES, Abdan K. Kenaf Fibres as Reinforcement for Polymeric Composites: A Review. Int. J. Mech. Mater. Eng. 2009; 4, 3: 239–248.
- 2. Arib RMN, Sapuan SM, Ahmad MMHM, Paridah MT, Zaman HMDK. Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Mater. Des. 2006; 27, 5: 391–396.
- 3. Aji I, Zainudin E, Abdan K, Sapuan S, Khairul M. Mechanical properties and water absorption behavior of hybridized kenaf/pineapple leaf fibre-reinforced high-density polyethylene composite. J. Compos. Mater. 2012; 47, 8: 979–990.
- 4. Begum K, Islam MA. Natural Fiber as a substitute to Synthetic Fiber in Polymer Composites: A Review. Res. J. Eng. Sci. 2013; 2, 3: 46–53.
- 5. Taj S, Munawar MA, Khan S. Natural Fiber-Reinforced Polymer Composites. Pakistan Academy Science 2007; 44, 2: 129–144.
- 6. Azwa ZN, Yousif BF, Manalo AC, Karunasena W. A review on the degradability of polymeric composites based on natural fibres. Mater. Des. 2013; 47: 424–442.
- 7. Abdul Khalil HPS, Bhat H, Ireana Yusra F. Green composites from sustainable cellulose nanofibrils: A review. Carbohydr. Polym. 2012; 87, 2: 963–979.
- 8. Nguong CW, Lee SNB, Sujan D. A Review on Natural Fibre Reinforced Polymer Composites. World Academy of Science, Engineering and Technology 2013; 73: 1123–1130.
- 9. Joshi S, Drzal L, Mohanty A, Arora S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos. Part A Appl. Sci. Manuf. 2004; 35, 3: 371–376.
- 10. Ishak MR, Sapuan SM, Leman Z, Rahman MZ, Anwar UMK, Siregar JP. Sugar palm (Arenga pinnata): Its fibres, polymers and composites. Carbohydr. Polym2013; 91, 2: 699–710.
- 11. Yusriah L, Sapuan SM, Zainudin ES, Mariatti M. Exploring the Potential of Betel Nut Husk Fiber as Reinforcement in Polymer Composites: Effect of Fiber Maturity. Procedia Chem. 2012; 4: 87–94.
- 12. Jawaid M, Abdul Khalil HPS. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydr. Polym. 2011; 86, 1: 1–18.
- 13. Kalia S, Kaith BS, Kaur I. Cellulosic Fibers: Bio- and Nano-Polymer Composites. Ed. Springer, New York, 2011.
- 14. Tori Hudson ND. A Research Review on the use of Hibiscus Sabdariffa, Better Medicine – National Network of Holistic Practitioner Communities, 2011.
- 15. Mungole A, Chaturvedi A, Hibiscus Sabdariffa L. Rich Source of Secondary Metabolisme. Int. J. Pharm. Sci. Rev. Res. 2011; 6, 1: 83–87.
- 16. Mohamad O, Mohd Nazir B, Abdul Rahman M, Herman S. Roselle: A new crop in Malaysia. Buletin Persatuan Genetik Malaysia 2002; 37, 1: 12–13.
- 17. Mahadevan N, Kamboj P. Hibiscus sabdariffa Linn. – An overview. Nat. Prod. Radiance 2009; 8, 1: 77–83.
- 18. Grace F. Investigation the suitability of Hibiscus Sabdariffa calyx extract as colouring agent for paediatric syrups. Ed. Department of Pharmaceutics, Kwame Nkrumah University of Science And Technology, 2008.
- 19. Wilson W. Discover the many uses of the Roselle plant. NParks, 2009. http://mygreenspace.nparks.gov.sg/discover-the-many-uses-of-the-roselle-plant/.
- 20. Selim KA, Khalil KE, Abdel-Bary MS, Abdel-Azeim NA. Extraction, Encapsulation and Utilization of Red Pigments from Roselle (Hibiscus sabdariffa L.) as Natural Food Colourants, 1993.
- 21. Managooli VA. Dyeing Mesta ( Hibiscus sabdariffa ) Fibre with Natural Colourant. Ed. Department of Textiles and Apparel Designing College of Rural Home Science, Dharwad University Of Agricultural Sciences, Dharwad, 2009.
- 22. Das Gupta PC. The Hemicelluloses of Roselle Fiber (Hibiscus sabdariffa). Text. Res. J. 1959; 30, 3: 237.
- 23. Wester P. Roselle: Its Culture and Uses. U.S. Dep. Agric. No. October, pp. 1–16, 1907; http://naldc.nal.usda.gov/download/ORC00000105/PDF
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e9d5be5-7c52-4b20-8356-42acbc4446c3