Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A TiO2/CdS coupled system was prepared by mixing the TiO2 P25 with CdS synthesized by means of the precipitation method. It was found that the specific surface area (SSA) of both components is extremely different and equals 49.5 for TiO2 and 145.4 m2·g-1 for CdS. The comparison of particle size distribution and images obtained by means of transmission electron microscopy (TEM) showed agglomeration of nanocomposites. X-ray diffraction (XRD) patterns suggest that CdS crystallizes in a mixture of cubic and hexagonal phases. Optical reflectance spectra revealed a gradual shift of the fundamental absorption edge towards longer wavelengths with increasing CdS molar fraction, which indicates an extension of the absorption spectrum of TiO2. The photocatalytic activity in UV and UV-vis was tested with the use of methyl orange (MO). The Langmuir–Hinshelwood model described well the photodegradation process of MO. The results showed that the photocatalytic behaviour of the TiO2/CdS mixture is significantly better than that of pure nanopowders.
Wydawca
Czasopismo
Rocznik
Tom
Strony
841--849
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Inorganic Chemistry, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Inorganic Chemistry, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Science and Technology, Faculty of Energy and Fuels, Department of Hydrogen Energy, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Inorganic Chemistry, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Inorganic Chemistry, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
- [1] N. Serpone, E. Borgarello, M. Grätzel, J. Chem. Soc., Chem. Commun. 6, 342-344 (1984).
- [2] N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, J. Photochem. Photobio A 85, 247-255 (1995).
- [3] Y. Bessekhouad, N. Chaoui, M. Trzpit, N. Ghazzal, D. Robert, J.V. Weber, J. Photochem. Photobio. A 183, 218-224 (2006).
- [4] D. Robert, Catal. Today 122, 20-26 (2007).
- [5] Ch. Su, Ch. Shao, Y. Liu, J. Colloid Interf. Sci. 359, 220-227 (2011).
- [6] R. Daghrir, P. Drogui, D. Robert, Ind. Eng. Chem. Res. 52, 3581-3599 (2013).
- [7] G. Yang, B. Yang, T. Xiao, Z. Yan, Appl. Surf. Sci. 283, 402-410 (2013).
- [8] L. Liua, J. Lva, G. Xua, Y. Wanga, K. Xiea, Z. Chenc, Y. Wu, J. Solid State Chem. 208, 27-34 (2013).
- [9] F.-X. Xiao, J. Miao, H.-Y. Wang, B. Liu, J. Mater. Chem. 1, 12229-12238 (2013).
- [10] L. Lia, L. Wanga, T. Hub, W. Zhanga, X. Zhanga, X. Chen, J. Solid State Chem. 218, 81-89 (2014).
- [11] H. Zhu, R. Jiang, L. Xiao, L. Liu, C. Cao, G. Zeng, Appl. Surf. Sci. 273, 661-669 (2013).
- [12] X. Guoa, C. Chenc, W. Songa, X. Wanga, W. Dia, W. Qin, J. Mol. Catal. A-Chem. 387, 1-6 (2014).
- [13] D. Jiang, T. Zhou, Q. Sun, Y. Yu, G. Shi, L. Jin, Chin. J. Chem. 29, 2505-2510 (2011).
- [14] Y. Zhu, R. Wang, W. Zhang, H. Ge, X. Wang, L. Li, Mater. Res. Bull. 61, 400-403 (2014).
- [15] W. Chengyu., S. Huamei, T. Ying, Y. Tongsuo, Z. Guowu, Sep. Purif. Technol. 32, 357-362 (2003).
- [16] X. Zhou, F. Yang, B. Jin, L. Chen, S. Li, J. Nanomater., Article ID 678505 7 pages (2014).
- [17] S. Feng, J. Yang, M. Liu, H. Zhu, J. Zhang, G. Li, Electrochim. Acta 83, 321-326 (2012).
- [18] G. Wu, M. Tian, A. Chen, J. Photochem. Photobio. A 233, 65-71 (2012).
- [19] H. Yao, W. Fu, H. Yang, J. Ma, M. Sun, Y. Chen, W. Zhang, D. Wu, P. Lv, M. Li, Electrochim. Acta 125, 258-265 (2014).
- [20] A. Trenczek-Zajac, A. Kusior, A. Lacz, M. Radecka, K. Zakrzewska, Mater. Res. Bull. 60, 28-37 (2014).
- [21] M. Xia, F. Wang, Y. Wang, A. Pan, B. Zou, Q. Zhang, Y. Wang, Mater. Lett. 64, 1688-1690 (2010).
- [22] S. Yang, A.S. Nair, S. Ramakrishna, Mater. Lett. 116, 345-348 (2014).
- [23] Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Chem. Rev. 114, 9987-10043 (2014).
- [24] M. Fujii, K. Nagasuna, M. Fujishima, T. Akita, H. Tada, J. Phys. Chem. C 113, 16711-16716 (2009).
- [25] M. Alexandre, P. Dubois, Mat. Sci. Eng. R. 28, 1-63 (2000).
- [26] https://www.aerosil.com/product/aerosil/Documents/TI-1243-Titanium-Dioxide-as-Photocatalyst-EN.pdf.
- [27] C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9, 671-675 (2012)
- [28] P. Scherrer, Abh. Kön Gesell. Wiss. Götting. 2, 98-100 (1918).
- [29] R.J. White, V.L. Budarin, J.H. Clark, Colloid. Surface. A 444, 69-75 (2014).
- [30] A.B. Murphy, Sol. Energ. Mater. 91, 1326-1337 (2007).
- [31] J. Kaur, S. Bansal, S. Singhal, Physica B 416, 33-38 (2013).
- [32] K. Dai, L. Lu, G. Dawson, J. Mater. Eng. Perform. 22, 1035-1040 (2013).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e9cb1fd-1919-422d-93c8-8bed594e094a