Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A mesh generation algorithm for the Method of Moments (MoM) is presented here. Mesh of a shape is a set of cells (e.g. triangles) approximating this shape, and meshes are used, among others, in electromagnetic analysis with the MoM. For arbitrary planar shapes, this algorithm (named CGSM) generates a mesh comprised of mixed triangular and rectangular cells. The shape(s) to be meshed, described with line segments and arcs, may have any number of holes. Moreover, CGSM can provide non-uniform (denser) mesh near the edges of each shape. In the paper, a brief step-by-step description of CGSM is given, and then two structures are simulated using meshes created by CGSM and commercial software IE3D™.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
3--6
Opis fizyczny
Bibliogr. 8 poz., rys., tab.
Twórcy
autor
- Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
autor
- Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
Bibliografia
- [1] Peterson, A.F., S.L. Ray, and R. Mittra. Computational methods for electromagnetics. New York: IEEE Press, 1998.
- [2] Newman, H., and P. Tulyathan. “A surface patch model for polygonal plates.” IEEE Trans. Antennas Propagat. 30.7 (1982): 588–593.
- [3] Held, M. On the computational geometry of pocket machining. Springer, 1991.
- [4] Sercu, J., et al. „Full-wave space-domain analysis of open microstrip discontinuities […].” IEEE Trans. Microw. Theory Tech. 41.9 (1993): 1581–1588.
- [5] Johnson, W.A., D.R. Wilton, and R.M . Sharpe. “Modeling scattering from and radiation by arbitrary shaped objects with the EFIE […].” Electromagnetics. 10.1,2 (1990): 41–63.
- [6] Linkowski, T.A. Methodology for computational domain discretization within the IE-MoM approach, M.S. thesis. Wroclaw University of Technology, 2010.
- [7] Linkowski, T.A., and P.M. Słobodzian. „Automatic mesh generation for planar structures […].” 5th European Conf. Antennas Propagat (EuCAP 2011). Rome, Italy, 2011: 1562–1566.
- [8] de Berg, M., et al. Computational geometry: algorithms and applications. 3rd ed. Berlin: Springer, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e9a3b06-9a46-4b1c-b031-1cebd0035e17