
El
ec

tr
on

ic
s 

an
d 

In
fo

rm
at

io
n 

Te
ch

no
lo

gi
es

3

Generation of mixed triangular-rectangular 
meshes of arbitrary planar shapes: 
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A mesh generation algorithm for the Method of Moments (MoM) is presented here. Mesh of a  shape is a  set of cells (e.g. 
triangles) approximating this shape, and meshes are used, among others, in electromagnetic analysis with the MoM. For arbitrary 
planar shapes, this algorithm (named CGSM) generates a mesh comprised of mixed triangular and rectangular cells. Th e shape(s) 
to be meshed, described with line segments and arcs, may have any number of holes. Moreover, CGSM can provide non-uniform 
(denser) mesh near the edges of each shape. In the paper, a brief step-by-step description of CGSM is given, and then two 
structures are simulated using meshes created by CGSM and commercial software IE3D™.
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Introduction

Mesh generation for the Method of Moments (MoM) 
[1] consists in approximating a  shape (e.g. a  polygon) 
with a  set of non-overlapping cells (i.e. shapes like 
triangles, rectangles, or quadrilaterals). Th is process is 
necessary to carry out an electromagnetic analysis of this 
shape with the MoM.

Since the complexity of the MoM may reach O(N3) 
[1], where N is the number of unknowns (e.g. the 
number of cells), we need to minimize N. On the other 
hand, cells cannot be too large (i.e. N cannot be too 
small), as this would distort the accuracy of the analysis 
[2]. Th erefore, CGSM approximates the shape with as 
many rectangles having the maximum allowed (nominal) 
size as possible; the remaining area is meshed with 
triangles.

To obtain a non-uniform mesh near edges (a.k.a. edge 
meshing), CGSM creates contours of the shape (a.k.a. 
polygon off setting [3]) with requested width (e.g. 0.2 of 
the nominal length). Th is speeds up the MoM analysis 
[4]. Th e nominal length should equal 0.03–0.2 of the 
wavelength [1], and the triangles should be as close to 
equilateral as possible [5].

CGSM was fi rst described in [6], and then its 
improved version was reported in [7]. Here, its operation 

is exemplifi ed on a test shape, and meshes of a few other 
shapes are given.

Algorithm

Th e algorithm has four stages: Contour creation, Grid 
creation, Subdivision and Mesh generation (hence, 
CGSM). A test shape (Fig. 1a) will be used to demonstrate 
the operation of each stage.

Th e test shape will be meshed at 1.8 GHz, using 
20 cells per wavelength and a 0.25 contour. Its overall 
size is 51 × 38 mm, and its vertices (x;y) are: 
14.4;6.3|54;0.9|54;38.7| 19.8;38.7 a(3.6;18), 
hole: 24.3;8.1 a(31.5;6.3)|36;8.1|36;18.9|24.3;
18.9, where a(P) is arc through P.

Contour creation

Several steps are taken in order to create the contours. 
First, each edge is translated inside (if a  boundary 
edge)  or outside (if a  hole edge) by contour width 
(Fig. 1b).

Th en, the edges are interconnected so that they form 
simply-connected fi gures (Fig. 2a). Finally, all edges are 
intersected, unnecessary edges are removed, and thus 
obtained edges are assembled into fi nal contours 
(Fig. 2b). 
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      (a)           (b)

Fig. 1. Contour creation: (a) test shape, (b) opposite contour 
edges.

      (a)           (b)

Fig. 2. Contour creation: (a) interconnected edges, (b) fi nal 
contours.

Grid creation

In this stage, a  grid adapted to the contour edges is 
created. First, vertical grid lines are determined (Fig. 3a), 
and then the horizontal ones are added (Fig. 3b). 

      (a)           (b)

Fig. 3. Grid creation: (a) vertical lines, (b) entire grid.

Subdivision of edges

Here, the edges are subdivided, i.e. cut into shorter edges. 
Th e subdivision starts with the most recently created 
contour and proceeds until the original shape is subdivided.

First, all edges are subdivided in grid nodes, i.e. 
intersections of horizontal and vertical grid lines (in our 
example, there are no such places). Th en, horizontal and 
vertical segments are subdivided by vertical and 
horizontal grid lines, respectively (Fig. 4a). Finally, all 
other segments are subdivided, and all arcs are converted 
into segments (Fig. 4b). 

For other contours, the subdivision is fi rst based on 
the previously subdivided contour (so-called descendant-
-based subdivision, Fig. 5a). Th en, the procedure 
described in the previous paragraph is applied to the 
remaining edges (Fig. 5b). 

      (a)           (b)

Fig. 4. Subdivision: (a) horizontal and vertical segments, (b) 
other segments and arcs.

      (a)           (b)

Fig. 5. Subdivision: (a) descendant-based, (b) remaining 
edges.

Mesh generation

Th e fi nal stage is the actual mesh generation. First of all, 
axis-aligned rectangular cells are inserted into the grid 
eyes wherever possible. Th is operation yields zero or 
more remaining polygons, which still need to be meshed 
(Fig. 6a). In order to triangulate them, they are divided 
into monotone polygons [8], i.e. polygons which 
intersect with an almost vertical line (y=a∙x+b, a  –∞) 
at most twice (Fig. 6b). 

      (a)           (b)

F ig. 6. Mesh generation: (a) grid-based rectangles, (b) 
monotone remaining polygons.

Th ese monotone polygons are then triangulated (Fig. 7a). 
However, such triangulation is often of poor quality, so 
the Delaunay fl ipping [8] is applied (Fig. 7b). It consists 
in checking whether for any pair of neighboring triangles 
ABC and ABD, the circumcircle of ABC contains vertex 
D. If so, their common edge AB is fl ipped so that we 
obtain triangles ACD and BCD instead. Finally, some 
triangles are divided in grid nodes, and some are merged 
into rectangles, which yields a  complete interior mesh 
(Fig. 8a).
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      (a)           (b)

F ig. 7. Mesh generation: (a) remaining polygons 
triangulated, (b) Delaunay fl ipping applied. 

      (a)           (b)

F ig. 8. Mesh generation: (a) complete interior mesh, (b) 
descendant-based mesh. 

      (a)           (b)

F ig. 9. Mesh generation: (a) complete contour mesh, (b) 
fi nal mesh (■ 25, ▲56).

For contour areas, a descendant-based mesh is generated 
fi rst (Fig. 8b). Only afterwards, the remaining 
contour  area is meshed like the interior (Fig. 9a). 
Th e  fi nal mesh is a  sum of the interior and contour 
meshes (Fig. 9b). 

Results

In this section, simulations of the electric current density 
distribution over two structures are given. Each structure 
is simulated using a mesh created by commercial software 
IE3D™ (ver. 12.35), and then using a mesh by CGSM. 
Always, 30 cells per wavelength are used.

Th e two structures are: A) a  planar antenna with 
overall size 83 × 44 mm, and B) a “CGSM” shape with 
overall size 234 × 62 mm. Th eir meshes are given in 
Fig.  10 and 12, respectively. Th e distribution of the 
electric current density over their surface is presented 
in Fig. 11 and 13, respectively. Moreover, a summary of 
the results is given in Table 1.

Note that the structures are defi ned on a dielectric 
substrate with height h = 60 mil, dielectric constant 
εr = 3.4, and loss tangent tan δ = 0.002. Moreover, 
they are excited by a horizontally-polarized plane wave 
with inclination θ = 0, azimuth φ = 0, and magnitude: 
1V.

Conclusions

In this paper, a  mesh generation algorithm for the 
MoM  that is capable of discretizing arbitrary planar 

   (a)              (b)

Fig. 10. Planar antenn a meshed at 1.8 GHz (contours: 0.05, 0.2) by: (a) IE3D™, (b) CGSM.

Table 1. Results of the  MoM simulations using meshes created by IE3D™ and CGSM.

Structure Algorithm Cells CC N t ΔN Δt

Planar antenna 
IE3D™ ▲ 250 ■ 604  1466 4.5 s C: 226

(16%)
C: 1 s
(22%)CGSM ▲ 232 ■ 498  1240 3.5 s

“CGSM” shape 
IE3D™ ▲ 1561 ■ 783  3539 25 s C: 911

(26%)
C: 12 s
(48%)CGSM ▲ 1204 ■ 543  2628 13 s

CC — obtained correct contours, N — unknowns (internal mesh edges), t — analysis time (fi lling and solving of the MoM matrix), 
ΔN/Δt — diff erence in unknowns/time in favor of I (IE3D) / C (CGSM).
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shapes using triangles and rectangles has been presented. 
Th is algorithm (CGSM) generates meshes with more 
regularly distributed and more evenly sized cells 
than  commercial software IE3D™. As a  result, the 
number of unknowns in the MoM is smaller, which 
shortens the analysis time (in our examples, by 22% and 
48%).

Such performance of CGSM stems from its use of 
contours for providing “edge mesh,” and use of an 
adaptive grid for uniform distribution of rectangles in 
the interior. As a  result, it can produce regular meshes 
even for very complex shapes (e.g. Fig. 12b).

Th e distribution of current density is similar for 
meshes created by both algorithms. However, IE3D™ 
sometimes fails to provide correct “edge mesh” for 
some edges (e.g. top right part in Fig. 10a), which may 
lead to inaccuracies in the current density approxima-
tion  near these places. Moreover, IE3D™ often intro-
duces excessive triangles with very small angles (Fig. 10a, 
12a), which not only unnecessarily increases the 
number  of unknowns (and thus slows down the 
analysis),  but also distorts the accuracy of the 
approximation.

   (a)              (b)

Fig. 11. Electric curre nt density (reference: 0.6 A/m) over a planar antenna (1.8 GHz) meshed by: (a) IE3D™, (b) CGSM.

   (a)              (b)

Fig. 12. “CGSM ” shape meshed at 1.5 GHz (contour: 0.15) by: (a) IE3D™, (b) CGSM.

   (a)              (b)

Fig. 13. Electric  current density (reference: 0.4 A/m) over a “CGSM” shape (1.5 GHz) meshed by: (a) IE3D™, (b) CGSM.
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