PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biosorption of Hexavalent Chromium onto Ziziphus lotus Fruits Powder: Kinetics, Equilibrium, and Thermodynamics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ziziphus lotus has been the subject of several researchs because of its nutritional benefits and ecological attributes. The removal of hexavalent chromium Cr(VI) from a solution using powdered Zizphus lotus fruits, for its qualities of being inexpensive as well as environmentally friendly, was investigated. The results obtained showed that at pH = 2, at 30°C, after 600 min of adsorbent/adsorbate contact, with 100 mg/L as initial concentration of Cr(VI) and a biosorbent dosage of 5 g/L, the biosorption of Cr(VI) on Zizphus lotus fruit powder (ZLFP) is at its maximum rate. The sorption process was exothermic (∆H° = –6.69 kJ/mol), and was characterized by a positive entropy values (∆S° = 46.76 J/K mol) suggesting a high affinity of the ZLFP for Cr(VI). Given that the Gibbs free energy (∆G°) is negative and decreases as temperatures increase from 293 to 323 K, the process of biosorption is both feasible and spontaneous. The Temkin model and the Langmuir model both generated excellent fits to the equilibrium data. The maximum monolayer biosorption capacity was 36.11 mg/g. The pseudo second order model was used to fit the kinetic data relating to the adsorption of Cr(VI) on the ZLFP. The FTIR spectral analysis allowed the characterization of the biochemical groups mainly involved in the sorption of Cr(VI) ions on the ZLFP, and which are: N–C, H-O, O–C, H-C, and O=C. The capacity of Ziziphus lotus fruit as an inexpensive, effective, and ecofriendly biosorbent is confirmed through this study.
Rocznik
Strony
321--332
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
  • Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
  • Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
  • Agronomic and Veterinary Institute Hassan II, Production, Protection and Plant Biotechnology Department, Rabat, Morocco
  • Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
  • Advanced Materials, Structures and Civil Engineering Team, ENSA Tetouan, Abdelmalek Essaadi University, Tetouan, Morocco
  • Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
Bibliografia
  • 1. Abcha I., Ben-Haj Said L., Salmieri S., Criado P., Neffati M., Lacroix M. 2021. Optimization of extraction parameters, characterization and assessment of bioactive properties of Ziziphus lotus fruit pulp for nutraceutical potential. European Food Research and Technology, 247(9), 2193-2209.
  • 2. Abdul M.K.N., Fitri A., Wan-Mohtar W.H.M., Wan-Mohd J.W.S., Zuhairi N.Z., Kamarudin M.K.A. 2021. A study of spatial and water quality index during dry and rainy seasons at Kelantan River Basin, Peninsular Malaysia. Arab J Geosci, 14 (2), 852021.
  • 3. Ait-Abderrahim L., Taïbi K., Ait-Abderrahim C. 2019. Assessment of the Antimicrobial and Antioxidant Activities of Ziziphus lotus and Peganum harmala. Iranian Journal of Science and Technology, Transactions A: Science, 43, 409-414.
  • 4. Ajmani A., Shahnaz T., Subbiah S., Narayanasamy S. 2019. Hexavalent chromium adsorption on virgin, biochar, and chemically modified carbons prepared from Phanera vahlii fruit biomass: Equilibrium, kinetics, and thermodynamics approach. Environmental Science and Pollution Research, 26, 32137-32150.
  • 5. Akpomie K.G., Conradie J. 2020. Banana peel as a biosorbent for the decontamination of water pollutants. Environ Chem Lett, 8(4), 1085–1112.
  • 6. Alouache A., Selatnia A., Sayah H.E., Khodja M., Moussous S., Daoud N. 2022. Biosorption of hexavalent chromium and Congo red dye onto Pleurotus mutilus biomass in aqueous solutions. International Journal of Environmental Science and Technology, 19(4), 2477-2492.
  • 7. Anandkumar J., Mandal B. 2009. Removal of Cr(VI) from aqueous solution using Bael fruit (Aegle marmelos correa) shell as an adsorbent. Journal of Hazardous Materials, 168(2), 633–640.
  • 8. Arola K., Van-der-Bruggen B., Mänttäri M., Kallioinen M. 2019. Treatment options for nanofiltration and reverse osmosis concentrates from municipal wastewater treatment: A review. Critical Reviews in Environmental Science and Technology, 49(22), 2049–2116.
  • 9. Ayele A., Godeto Y.G. 2021. Bioremediation of chromium by microorganisms and its mechanisms related to functional groups. Journal of Chemistry, 1–21.
  • 10. Bayuo J., Pelig-Ba K.B., Abukari M.A. 2019. Adsorptive removal of chromium (VI) from aqueous solution unto groundnut shell. Applied Water Science, 9(4), 107.
  • 11. Berkani F., Dahmoune F., Kadri N., Serralheiro M.L., Ressaissi A., Abbou., et al. 2022. LC–ESI–MS/MS analysis, biological effects of phenolic compounds extracted by microwave method from Algerian Zizyphus lotus fruits. Food Measure, 16(5), 3354–3371.
  • 12. Boloy R.A.M., Da-Cunha R.A., Rios E.M., De-Araújo S.M.J., Soares L.O., Machado V. A., et al. 2021. Waste-to-energy technologies towards circular economy: A systematic literature review and bibliometric analysis. Water Air Soil Pollut, (7) 306.
  • 13. Boudechiche N., Fares M., Ouyahia S., Yazid H., Trari M., Sadaoui Z. 2019. Comparative study on removal of two basic dyes in aqueous medium by adsorption using activated carbon from Ziziphus lotus stones. Microchemical Journal, 146, 1010–1018.
  • 14. Butnariu M. 2022. Heavy metals as pollutants in the aquatic Black Sea ecosystem. Bacterial Fish Diseases, Academic Press, 31–57.
  • 15. Chai W.S, Cheun J.Y, Kumar P.S, Mubashir M., Majeed Z., Banat F. et al. 2021. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production, 296: 126589.
  • 16. Coetzee J. J., Bansal N., and Chirwa E.M.N. 2020. Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation. Exposure and Health, 12, 51-62.
  • 17. Dhal B, Pandey, Abhilash B.D. 2018. Mechanism elucidation and adsorbent characterization for removal of Cr(VI) by native fungal adsorbent, Sustainable Environment Research, 28(6), 289–297.
  • 18. El Maaiden E., El Kharrassi Y., Moustaid K., Essamadi A.K., Nasser B. 2019. Comparative study of phytochemical profile between Ziziphus spinachristi and Ziziphus lotus from Morocco. Food Measure, 13(1), 21–130.
  • 19. El Messaoudi N., El Khomri M., Chegini Z.G., Bouich A., Dbik A., Bentahar S., et al. 2022. Dye removal from aqueous solution using nanocomposite synthesized from oxalic acid-modified agricultural solid waste and ZnFe2O4 nanoparticles. Nanotechnol. Environ. Eng., 7(3), 797–811.
  • 20. El Yakoubi N., Ennami M., El Ansari Z. N., Ait-Lhaj F., Bounab L., El Kbiach M., et al. 2023a. Utilization of Ziziphus lotus fruit as a potential biosorbent for lead (II) and cadmium (II) ion removal from aqueous solution. Ecological Engineering & Environmental Technology, 24(3), 135–146.
  • 21. El Yakoubi N., Ennami M., El Ansari Z.N., Ait-Lhaj F., Bounab L., El Kbiach M., et al. 2023b. Removal of Cd(II) and Pb(II) from aqueous solution using Ziziphus lotus leaves as a potential biosorbent, Desalination and Water Treatment. (300), 65–74.
  • 22. Elahi A., Arooj I., Bukhari D.A., Rehman A. 2020. Successive use of microorganisms to remove chromium from wastewater. Appl Microbiol Biotechnol, 104(9), 3729–3743.
  • 23. Elgarahy A.M., Elwakeel K.Z., Mohammad S.H., Elshoubaky G.A. 2021. A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Cleaner Engineering and Technology, 100209.
  • 24. Espinoza-Sánchez M.A., Arévalo-Niño K., Quintero-Zapata I., Castro-González I., Almaguer-Cantú V. 2019. Cr(VI) adsorption from aqueous solution by fungal bioremediation based using Rhizopus sp. Journal of Environmental Management, 251, 109-595.
  • 25. Hammi K. M., Essid R., Khadraoui N., Ksouri R., Majdoub H., Tabbene O. 2022. Antimicrobial, antioxidant and antileishmanial activities of Ziziphus lotus leaves. Archives of Microbiology, 204(1), 119.
  • 26. Hube S., Eskafi M., Hrafnkelsdóttir K. F., Bjarnadóttir B., Bjarnadóttir M.Á., Axelsdóttir S., et al. 2020. Direct membrane filtration for wastewater treatment and resource recovery: A review. Science of The Total Environment, 710, 136375.
  • 27. Jayakumar V., Govindaradjane S., Rajamohan N., Rajasimman M. 2021. Biosorption potential of brown algae, Sargassum polycystum, for the removal of toxic metals, cadmium and zinc. Environ Sci Pollut Res, 29(28), 41909–41922.
  • 28. Jorge N., Santos C., Teixeira A.R., Marchão L., Tavares P.B., Lucas M.S., et al. 2022. Treatment of agro-industrial wastewaters by coagulation-flocculation-decantation and advanced oxidation processes – A literature review. Engineering Proceedings, 19(1), 33.
  • 29. Khalil U., Shakoor B.M., Ali S., Rizwan M., Nasser A.M., Wijaya L. 2020. Adsorption-reduction performance of tea waste and rice husk biochars for Cr(VI) elimination from wastewater. Journal of Saudi Chemical Society, 24(11), 799–810.
  • 30. Liu X., Tian R., Ding W., He Y., Li H. 2019. Adsorption selectivity of heavy metals by Na-clinoptilolite in aqueous solutions. Adsorption, 25(4) ,747–755.
  • 31. Mahmoud A.E.D., Fawzy M., Hosny G., Obaid A. 2021. Equilibrium, kinetic, and diffusion models of chromium(VI) removal using Phragmites australis and Ziziphus spina-christi biomass. International Journal of Environmental Science and Technology, 18, 2125-2136.
  • 32. Mishra S., Bharagava R.N., More N., Yadav A., Zainith S., Mani S., et al. 2019. Heavy metal contamination: An alarming threat to environment and human health. Environmental Biotechnology: For Sustainable Future, 103–125.
  • 33. Mohan D., Rajput S., Singh V.K., Steele P.H., Pittman C.U. 2011. Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. Journal of Hazardous Materials, 188: 319–333.
  • 34. Mondal N.K., Samanta A., Roy P., Das B. 2019. Optimization study of adsorption parameters for removal of Cr(VI) using Magnolia leaf biomass by response surface methodology. Sustainable Water Resources Management, 5, 1627-1639.
  • 35. Murtaza G., Shehzad M., Kanwal T., Farooqi U.R., Owens G. 2022. Biomagnification of potentially toxic elements in animals consuming fodder irrigated with sewage water. Environ Geochem Health, 44(12), 4523–4538.
  • 36. Mushtaq Z., Liaquat M., Anum N., Liaquat R., Hira I., Waheed A., et al. 2022. Potential of plant growth promoting rhizobacteria to mitigate chromium contamination. Environmental Technology & Innovation, 28, 102826.
  • 37. Oukhrib R., Issami E., Ibrahimi B., Mouaden K., Bazzi L. 2017. Ziziphus lotus as green inhibitor of copper corrosion in natural sea water. Portugaliae Electrochimica Acta, 35(4), 187–200.
  • 38. Oyewole O.A., Zobeashia S.S.L.-T., Oladoja E.O., Raji R.O., Odiniya E.E., Musa A.M. 2019. Biosorption of heavy metal polluted soil using bacteria and fungi isolated from soil. SN Applied Sciences, 1, 1-8.
  • 39. Parashar D., Gandhimathi R. 2022. Zinc Ions adsorption from aqueous solution using raw and acid-modified orange peels: Kinetics, Isotherm, Thermodynamics, and Adsorption mechanism. Water Air Soil Pollut, (233) ,10-400.
  • 40. Prabhakaran D.C., Bolaños-Benitez V., Sivry Y., Gelabert A., Riotte J., Subramanian S. 2019. Mechanistic studies on the bioremediation of Cr(VI) using Sphingopyxis macrogoltabida SUK2c, a Cr(VI) tolerant bacterial isolate. Biochemical Engineering Journal, 107-292.
  • 41. Rai R., Aryal R.L., Paudyal H., Gautam S. K., Ghimire K.N., Pokhrel M.R., et al. 2023. Acid-treated pomegranate peel; An efficient biosorbent for the excision of hexavalent chromium from wastewater. Heliyon, 9(5).
  • 42. Rambabu K., Bharath G., Banat F., Show P.L. 2020. Biosorption performance of date palm empty fruit bunch wastes for toxic hexavalent chromium removal. Environmental Research, 109-694.
  • 43. Rashid R., Shafiq I., Akhter P., Iqbal M.J., Hussain M., A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environ Sci Pollut Res, 28(8), 9050–9066.
  • 44. Rosinger A.Y., and Brewis A., 2019. Life and death: Toward a human biology of water. American Journal of Human Biology, 32(1).
  • 45. Saatsaz M. 2020. A historical investigation on water resources management in Iran. Environment. Development and Sustainability, 22, 1749-1785.
  • 46. Sadeghi H., Fazlzadeh M., Zarei A., Mahvi A.H., Nazmara S. 2022. Spatial distribution and contamination of heavy metals in surface water, groundwater and topsoil surrounding Moghan’s tannery site in Ardabil, Iran. International Journal of Environmental Analytical Chemistry, 102(5), 1049-1059.
  • 47. Sathish T., Vinithkumar N.V., Dharani G., Kirubagaran R. Efficacy of mangrove leaf powder for bioremediation of chromium (VI) from aqueous solutions: kinetic and thermodynamic evaluation. Applied Water Science, 5, 153-160.
  • 48. Suganya E., Saranya N., Patra C., Varghese L. A., Selvaraju N. 2019. Biosorption potential of Gliricidia sepium leaf powder to sequester hexavalent chromium from synthetic aqueous solution. Journal of Environmental Chemical Engineering, 7(3), 103112.
  • 49. Tariq M., Anayat A., Waseem M., Rasool M.H., Zahoor M.A., Ali S. et al. 2020. Physicochemical and bacteriological characterization of industrial wastewater being discharged to surface water bodies: Significant threat to environmental pollution and human health. Journal of Chemistry, 1–10.
  • 50. Ugraskan V., Isik B., Yazici O., Cakar F. 2022. Removal of Safranine T by a highly efficient adsorbent (Cotinus coggygria leaves): Isotherms, kinetics, thermodynamics, and surface properties. Surfaces and Interfaces, 28, 101615.
  • 51. Vu X.H., Nguyen L.H., Van H.T., Nguyen D.V., Nguyen T.H., Nguyen Q.T. et al. 2019. Adsorption of chromium (VI) onto freshwater snail shell-derived biosorbent from aqueous solutions: Equilibrium, kinetics, and thermodynamics. Journal of Chemistry, 1–11.
  • 52. Wani A.A., Khan A.M., Manea Y.K., Salem M.A.S., Shahadat M. 2021. Selective adsorption and ultrafast fluorescent detection of Cr(VI) in wastewater using neodymium doped polyaniline supported layered double hydroxide nanocomposite. Journal of Hazardous Materials, 416, 125-754.
  • 53. White L.M., Shibuya T., Vance SD., Christensen LE., Bhartia R., Kidd R., et al. 2020. Simulating serpentinization as it could apply to the emergence of life using the JPL hydrothermal reactor. Astrobiology, 20(3), 307–326.
  • 54. Zhang Y., Duan X., 2020. Chemical precipitation of heavy metals from wastewater by using the synthetical magnesium hydroxy carbonate. Water Science and Technology, 81(6), 1130–1136.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e932aef-fba5-4182-b2ba-c2bafdade1ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.