PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The phase separation phenomenon in the Na2O–B2O3–SiO2–Fe2O3 glass-forming system and its application for producing porous glasses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Glasses in the Na2O–B2O3–SiO2–Fe2O3 system with a constant SiO2 content 70 mol% were synthesized using conventional melting in platinum crucibles in SiC-furnace in air. After synthesis and annealing, glasses were heat treated at 550°C for 96–144 hrs to promote phase separation. A tentative region of phase separation for this temperature was outlined. X-ray powder diffractometry results showed three iron-containing phases (Fe3O4, FeSiO3 and β-Fe2O3) forming in the investigated glasses with magnetite being the main phase as it is observed in most of the glasses. Chemical durability studies showed that compositions of phase-separated glasses suitable for synthesis of porous glasses, both iron-free and iron-containing lie in between 4 and 8 mol% of Na2O. Bulk samples of porous glasses were obtained within the chosen region having the following parameters: specific surface area 40–185 m2/g, porosity 30%–45%, pore diameter 3–14 nm. The parameters of porous structure of iron-containing porous glasses are of the same order of magnitude as the porous glass used for the multiferroic nanocomposite synthesis.
Czasopismo
Rocznik
Strony
437--444
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Institute of Silicate Chemistry, Russian Academy of Sciences, 199034 Makarova emb. 2, Saint-Petersburg, Russia
  • Institute of Silicate Chemistry, Russian Academy of Sciences, 199034 Makarova emb. 2, Saint-Petersburg, Russia
  • Institute of Silicate Chemistry, Russian Academy of Sciences, 199034 Makarova emb. 2, Saint-Petersburg, Russia
  • Institute of Silicate Chemistry, Russian Academy of Sciences, 199034 Makarova emb. 2, Saint-Petersburg, Russia
  • Institute of Silicate Chemistry, Russian Academy of Sciences, 199034 Makarova emb. 2, Saint-Petersburg, Russia
  • Institute of Silicate Chemistry, Russian Academy of Sciences, 199034 Makarova emb. 2, Saint-Petersburg, Russia
  • Institute of Silicate Chemistry, Russian Academy of Sciences, 199034 Makarova emb. 2, Saint-Petersburg, Russia
Bibliografia
  • [1] MAZURIN O.V., PORAI-KOSHITS E.A., Phase Separation in Glass, North-Holland Physics Publishers, Amsterdam, 1984.
  • [2] ENKE D., JANOWSKI F., SHWIEGER W., Porous glasses in the 21st century – A short review, Microporous and Mesoporous Materials 60(1–3), 2003, pp. 19–30, DOI: 10.1016/S1387-1811(03)00329-9.
  • [3] MÜLLER R., ANDERS N., TITUS J., ENKE D., Ultra-thin porous glass membranes – An innovative material for the immobilization of active species for optical chemosensors, Talanta 107, 2013, pp. 255–262, DOI: 10.1016/j.talanta.2012.12.038.
  • [4] ANTROPOVA T.V., KALININA S.V., KOSTYREVA T.G., DROZDOVA I.A., ANFIMOVA I.N., Peculiarities of the fabrication process and the structure of porous membranes based on two-phase fluorine- and phosphorus-containing sodium borosilicate glasses, Glass Physics and Chemistry 41(1), 2015, pp. 14 –25, DOI: 10.1134/S1087659615010022.
  • [5] YAZAWA T., SHIBUYA Y., HIDA R., MINESHIGE A., Preparation of In2O3 crystals in phase separated structure of sodium borosilicate glass and its electrical conductivity, Materials Research Bulletin 90, 2017, pp. 87–93, DOI: 10.1016/j.materresbull.2017.02.020.
  • [6] HASANUZZAMAN M., SAJJIA M., RAFFERTY A., OLAB A.G., Thermal behaviour of zircon/zirconia-added chemically durable borosilicate porous glass, Thermochimica Acta 555, 2013, pp. 81–88, DOI: 10.1016/j.tca.2012.12.018.
  • [7] KAUR R., SINGH S., PANDEY O.P., Gamma ray irradiation effects on the optical properties of BaO–Na2O–B2O3–SiO2 glasses, Journal of Molecular Structure 1048, 2013, pp. 78–82, DOI: 10.1016/ j.molstruc.2013.05.037.
  • [8] PSHENKO O.A., DROZDOVA I.A., POLYAKOVA I.G., ROGACKI K., CIZMAN A., POPRAWSKI R., RYSIAKIEWICZ-PASEK E., ANTROPOVA, T.V., Ferromagnetic iron-containing porous glasses, Glass Physics and Chemistry 40(2), 2014, pp. 167–172, DOI: 10.1134/S1087659614020175.
  • [9] CIŻMAN A., BEDNARSKI W., ANTROPOVA T.V., PSHENKO O., RYSIAKIEWICZ-PASEK E., WAPLAK S., POPRAWSKI R., Structural, dielectric, thermal and electron magnetic resonance studies of magnetic porous glasses filled with ferroelectrics, Composites Part B: Engineering 64, 2014, pp. 16–23, DOI: 10.1016/j.compositesb.2014.03.024.
  • [10] PSHENKO O.A., ANTROPOVA T.V., ARSENT'EV M.YU., DROZDOVA I.A., New Vitreous Nanocomposites Containing Phases of Fe3O4 and γ-KNO3, Glass Physics and Chemistry 41(5), 2015, pp. 509–514, DOI: 10.1134/S1087659615050144.
  • [11] ANTROPOVA T.V., PSHENKO O.A, ANFIMOVA I.N., DROZDOVA I.A., Method of creation of composite multiferroic on the base of ferromagnetic porous glass, Pat. RU 2015113421, 10.04.2015.
  • [12] PIRYUTKO M.M., BENEDIKTOVA N.V., KORSAK L.F., Improved method for determining silicon content in the form of a quinoline–silicon–molybdenum complex, Glass and Ceramics 38(8), 1981, pp. 439–441, DOI: 10.1007/BF00698733.
  • [13] PIRYUTKO M.M., BENEDIKTOVA-LODOCHNIKOVA N.V., Accelerated titrimetric determination of boron in silicates, Zhurnal Analiticheskoi Khimii (Journal of Analytical Chemistry) 25, 1970, pp. 136–141 (in Russian).
  • [14] PRICE W.J., Analytical Atomic Absorption Spectrometry, Heyden & Son Ltd., London, New York, Rheine, 1972.
  • [15] SCHWARZENBACH G., FLASCHKA H.A., Complexometric Titrations, 2nd Ed., Methuen Young Books, 1969.
  • [16] POPOV N.P., STOLYAROVA I.A., Khimicheskii analiz gornykh porod I mineralov (Chemical analysis of rocks and minerals), Nedra, Moscow, 1974 (in Russian).
  • [17] KONON M., ANTROPOVA T., KOSTYREVA T., DROZDOVA I., POLYAKOVA I., Leaching of the phase-separated glasses in Na2O–B2O3–SiO2–Fe2O3 system, Chemical Technology 67(1), 2016, pp. 7–12, DOI: 10.5755/j01.ct.67.1.14800.
  • [18] CHARLOT G., Les Méthodes de la chimie analytique: Analyse quantitative minérale (Methods of Analytical Chemistry. Quantitative Analysis of Inorganic Compounds), Paris: Masson et Cie Chartres, 1960.
  • [19] DO D.D., Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London, 1998.
  • [20] ANTROPOVA T.V., ANFIMOVA I.N., GOLOVINA G.F., Influence of the composition and temperature of heat treatment of porous glasses on their structure and light transmission in the visible spectral range, Glass Physics and Chemistry 35(6), 2009, pp. 572–579, DOI: 10.1134/S1087659609060042.
  • [21] KONON M.YU., STOLYAR S.V., DIKAYA L.F. POLYAKOVA I.G., DROZDOVA I.A., ANTROPOVA T.V., Physicochemical properties of glasses of the Na2O–B2O3–SiO2–Fe2O3 system in the 8Na2O/70SiO2 section, Glass Physics and Chemistry 41(1), 2015, pp. 116–121, DOI: 10.1134/S1087659615010150.
  • [22] KONON M.YU., STOLYAR S.V., POLYAKOVA I.G., DROZDOVA I.A., KURILENKO L.N., Phase separation in the glasses of the (8 – x)Na2O • xFe2O3 • 22B2O3 • 70SiO2 system, Glass Physics and Chemistry 42(6), 2016, pp. 631–634, DOI: 10.1134/S1087659616060109.
  • [23] KONON M.YU., STOLYAR S.V., DROZDOVA I.A., POLYAKOVA I.G., DIKAYA L.F., Phase separation and properties of glasses in the (16–x)Na2O–14B2O3–70SiO2–xFe2O3 system, Glass Physics and Chemistry 43(5), 2017, pp. 389–394, DOI: 10.1134/S1087659617050091.
  • [24] LINDSLEY D.H., DAVIS B.T.C., MACGREGOR I.D., Ferrosilite (FeSiO3): synthesis at high pressures and temperatures, Science 144(3614), 1964, pp. 73, 74, DOI: 10.1126/science.144.3614.73.
  • [25] ANTROPOVA T.V., Physico-chemical processes of the formation of porous glasses and high-silica materials based on the phase-separated alkali borosilicate systems, Doctoral Thesis, St. Petersburg, 2005 (in Russian).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e8ccf0b-0d75-499d-b506-18f1b3b6fa0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.