Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The roof-caving step scale goaf behind the working face is sensitive to the region’s spontaneous combustion and gas concentration distribution, including many rock block cracks and holes. A severe deviation from the dynamics of fluids in porous media by representative element volume (REV), leading to the results of Computational Fluid Dynamics (CFD) simulation, has a significant error. A heterogeneous two-dimensional pore network model was established to simulate the goaf flow accurately. The network was first created using the simple cubic lattice in the OpenPNM package, and the spatial distribution of the “O-ring” bulking factor was mapped to the network. The bulking factor and Weibull distribution were combined to produce the size distribution of the pore and throat in the network. The constructed pore network model was performed with single-phase flow simulations. The study determined the pore structure parameters of the pore network through the goaf’s risked falling characteristics and described the flow field’s distribution characteristics in the goaf. The permeability coefficient increases as pore diameter, throat diameter, pore volume and throat volume increase and increases as throat length decreases. The correlation between throat volume and permeability coefficient is the highest, which indicates that the whole throat is the main control factor governing the air transport capacity in the goaf. These results may provide some guidelines for controlling thermodynamic disasters in the goaf.
Wydawca
Czasopismo
Rocznik
Tom
Strony
51--66
Opis fizyczny
Bibliogr. 33 poz., rys., wykr.
Twórcy
autor
- Liaoning Technical University, College of Safety Science and Engineering, Key Laboratory of Mine Thermodynamic Disasters and Control of Ministry of Education, China
autor
- Liaoning Technical University, College of Safety Science and Engineering, Key Laboratory of Mine Thermodynamic Disasters and Control of Ministry of Education, China
autor
- Liaoning Technical University, College of Safety Science and Engineering, Key Laboratory of Mine Thermodynamic Disasters and Control of Ministry of Education, China
autor
- Liaoning Technical University, College of Safety Science and Engineering, Key Laboratory of Mine Thermodynamic Disasters and Control of Ministry of Education, China
autor
- Liaoning Technical University, College of Safety Science and Engineering, Key Laboratory of Mine Thermodynamic Disasters and Control of Ministry of Education, China
Bibliografia
- [1] K. Gao, L.J. Deng, J. Liu, L.X. Wen, D. Wong, Z.Y. Liu, Study on Mine Ventilation Resistance Coefficient Inversion Based on Genetic Algorithm. Arch. Min. Sci. 63 (4), 813-826 (2018). DOI: https://doi.org/10.24425/ams.2018.124977.
- [2] J. Szlązak, The Determination of a Co-efficient of Longwall Goaf Permeability. Arch. Min. Sci. 46 (4), 451-468 (2001).
- [3] M.G. Qian, J.L. Xu, Study on the “O-shape” Circle Distribution Characteristics of Mining-induced Fractures in the Overlaying Strata. J. China Coal Soc. 23 (5), 466-469 (1998).
- [4] S.G. Li, M.G. Qian, P.W. Shi, Study on Bed-separated Fissures of Overlying Stratum and Interstice Permeability in Fully-mechanized Top Coal Caving. Chin. J. Rock Mech. Eng. 19 (5), 604-607 (2000).
- [5] Y.T. Liang, T.F. Zhang, S.G. Wang, J.P. Sun, Heterogeneous Model of Porosity in Gobs and Its Airflow Field Distribution. J. China Coal Soc. 34 (9), 1203-1207 (2009).
- [6] P . Chen, L. Zhang, G.Q. Zou, Study of Three-dimensional Distribution of Permeability in Goaf Based on O-shape Circle Theory. Min. Saf. Environ. Prot. 42 (5), 38-41 (2015).
- [7] G.C. Gao, Z.X. Li, C. Zhang, Y. Zhang, J. Liu, B.D. Wu, Numerical Simulation for Multi-field Distribution Characteristic Features of the Goaf Based on 3D “O” Type Circle. J. Saf. Environ. 17 (3), 931-936 (2017). DOI: https://doi.org/10.13637/j.issn.1009-6094.2017.03.023.
- [8] J.H. Si, G.Y. Cheng, J.F. Zhu, T.X. Chu, Three-dimensional Modeling and Application of Permeability Characteristics of Heterogeneous Porous Media in Goaf. Coal Sci. Technol. 47 (5), 220-224 (2019). DOI: https://doi.org/10.13199/j.cnki.cst.2019.05.035.
- [9] M.M. Rashidi, A. Hosseini, I. Pop, S. Kumar, N. Freidoonimehr, Comparative Numerical Study of Single and Two-phase Models of Nanofluid Heat Transfer in Wavy Channel. Appl. Math. Mech. 35, 831-848 (2014). DOI: https://doi.org/10.1007/s10483-014-1839-9.
- [10] A. Sohail, H.A. Wajid, M.M. Rashidi, Numerical Modeling of Capillary–gravity Waves Using the Phase Field Method. Surface Review and Letters. 21 (03), 1450036 (2014). DOI: https://doi.org/10.1142/s0218625x1450036x.
- [11] R. Sadeghi, M.S. Shadloo, M. Hopp-Hirschler, A. Hadjadj, U. Nieken, Three-dimensional Lattice Boltzmann Simulations of High Density Ratio Two-phase Flows in Porous Media. Comput. Math. Appl. 75 (7), 2445-2465 (2018). DOI: https://doi.org/10.1016/j.camwa.2017.12.028.
- [12] J. Gostick, M. Aghighi, J. Hinebaugh, T. Tranter, M.A. Hoeh, H. Day, B. Spellacy, M.H. Sharqawy, A. Bazylak, A. Burns et al., OpenPNM: A Pore Network Modeling Package. Comput. Sci. Eng. 18 (4), 60-74 (2016). DOI: https://doi.org/10.1109/mcse.2016.49.
- [13] K. Xu, W. Wei, Y. Chen, H. Tian, S. Xu, J. Cai, A Pore Network Approach to Study Throat Size Effect on the Permeability of Reconstructed Porous Media. Water 14 (1), (2022). DOI: https://doi.org/10.3390/w14010077.
- [14] W . Wei, J. Cai, J. Xiao, Q. Meng, B. Xiao, Q. Han, Kozeny-Carman Constant of Porous Media: Insights from Fractal-capillary Imbibition Theory. Fuel 234, 1373-1379 (2018). DOI: https://doi.org/10.1016/j.fuel.2018.08.012.
- [15] M.S. Shadloo, G. Oger, D. Le Touzé, Smoothed Particle Hydrodynamics Method for Fluid Flows, towards Industrial Applications: Motivations, Current State, and Challenges. Comput. Fluids 136, 11-34 (2016). DOI: https://doi.org/10.1016/j.compfluid.2016.05.029.
- [16] Z .X. Chen, G.R. Huan, Y.L. Ma, Computational Methods for Multiphase Flows in Porous Media. (2006).
- [17] J. Miao, MSc thesis, 3D Reconstruction and Seepage Simulation of Macropores Structure in Low Permeability Coal. Henan University of Technology, Jiaozuo, China (2017).
- [18] I . Fatt, The Network Model of Porous Media. Transactions of the AIME. 207 (01), 144-181 (1956). DOI: https://doi.org/10.2118/574-G.
- [19] R.G. Larson, L.E. Scriven, H.T. Davis, Percolation Theory of Two Phase Flow in Porous Media. Chem. Eng. Sci. 36 (1), 57-73 (1981). DOI: https://doi.org/10.1016/0009-2509(81)80048-6.
- [20] M. Agnaou, M.A. Sadeghi, T.G. Tranter, J.T. Gostick, Modeling Transport of Charged Species in Pore Networks: Solution of the Nernst-Planck Equations Coupled With Fluid Flow and Charge Conservation Equations. Comput. Geosci. 140, 104505 (2020). DOI: https://doi.org/10.1016/j.cageo.2020.104505.
- [21] J. Bear, Translated by J.S. Li, C.X. Chen, Dynamics of Fluids in Porous Media, China Construction Industry Press, Beijing (1983).
- [22] K.E. Thompson, Pore-scale Modeling of Fluid Transport in Disordered Fibrous Materials. AIChE. J. 48 (7), 1369- 1389 (2002). DOI: https://doi.org/10.1002/aic.690480703.
- [23] T.G. Tranter, J.T. Gostick, A.D. Burns, W.F. Gale, Pore Network Modeling of Compressed Fuel Cell Components with OpenPNM. Fuel Cells 16 (4), 504-515 (2016). DOI: https://doi.org/10.1002/fuce.201500168.
- [24] B .Q. Zhang, Y.X. Wang, Oil (gas) Layer Physics, China University of Geosciences Press, Wuhan (1989).
- [25] F. Huang, PhD thesis, Three-dimensional Reconstruction and Simulation of Porous Media, University of Science and Technology of China, Hefei, China (2007).
- [26] Z .X. Li, G. Yi, J.G. Wu, D. Guo, C.J. Chun, D. Zhao, Study on spontaneous Combustion Distribution of Goaf Based on the “O” Type Risked Falling and Non-uniform Oxygen. J. China Coal Soc. 37 (3), 484-489 (2012). DOI: https://doi.org/10.13225/j.cnki.jccs.2012.03.031.
- [27] J.M. Li, MSc thesis, Design and Research of Fire Prevention and Extinguishing Scheme for Nitrogen Injection in Goaf of Fully Mechanized Caving Face in Linnancang Coal Mine, Liaoning Technical University, Fuxin, China (2019).
- [28] S.P. Sutera, R. Skalak, The History of Poiseuille’s Law. Annu. Rev. Fluid. Mech. 25 (1), 1-20 (1993). DOI: https://doi.org/10.1146/annurev.fl.25.010193.000245.
- [29] J.T. Gostick, M.A. Ioannidis, M.W. Fowler, M.D. Pritzker, Pore Network Modeling of Fibrous Gas Diffusion Layers For Polymer Electrolyte Membrane Fuel Cells. J. Power Sources 173 (1), 277-290 (2007). DOI: https://doi.org/10.1016/j.jpowsour.2007.04.059.
- [30] M.A. Ioannidis, I. Chatzis, Network Modeling of Pore Structure and Transport-properties of Porous-media. Chem. Eng. Sci. 48 (5), 951-972 (1993). DOI: https://doi.org/10.1016/0009-2509(93)80333-l.
- [31] H .L. Gu, X.P. Lai, M. Tao, W.Z. Cao, Z.K. Yang, The Role of Porosity in the Dynamic Disturbance Resistance of Water-saturated Coal. Int. J. Rock Mech. Min. Sci. 166, 105388 (2023). DOI: https://doi.org/10.1016/j.ijrmms.2023.105388.
- [32] Z .X. Li, PhD thesis, Study of Limit Coupling Point for Commonlu Controlling Gas and Spontaneous Combustion in Highly Gassy and Spontaneous Combustion Gobs, Liaoning Technical University, Fuxin, China (2007).
- [33] J. Szlazak, N. Szlazak, D. Obracaj, M. Borowski, Numerical Determination of Velocity Field of Airflow in Goaf, Proceedings of 31st Biennial International Conference of Safety in Mines Research Institutes: Health and Safety Mining Research for a Sustainable Future, Brisbane, Queensland Australia, 2-5 October 2005, 243-248.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e8be55d-a0b8-4ae4-b7c9-f86edade94a7