Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Spectral remote sensing is a very popular method in atmospheric monitoring. The paper presents an approach that involves mid-infrared spectral measurements of combustion processes. The dominant feature in this spectral range is CO2 radiation, which is used to determine the maximum temperature of nonluminous flames. Efforts are also made to determine the temperature profile of hot CO2, but they are limited to the laboratory conditions. The paper presents an analysis of the radiation spectrum of a non-uniform-temperature gas environment using a radiative transfer equation. Particularly important are the presented experimental measurements of various stages of the combustion process. They allow for a qualitative description of the physical phenomena involved in the process and therefore permit diagnostics. The next step is determination of a non-uniform-temperature profile based on the spectral radiation intensity with the 8 m optical path length.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
193--204
Opis fizyczny
Bibliogr. 56 poz., rys., wykr.
Twórcy
autor
- Lublin University of Technology, Institute of Electronics and Information Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
Bibliografia
- [1] Docquier, N., Candel, S. (2002). Combustion control and sensors: a review. Progress in Energy and Combustion Science, 28(2), 107-150.
- [2] Ballester, J., Garcia-Armingol, T. (2010). Diagnostic techniques for the monitoring and control of practical flames. Progress in Energy and Combustion Science, 36(4), 375-411.
- [3] Schafer, K., Brockmann, K., Heland, J., Wiesen, P., Jahn, C., Legras, O. (2005). Multipass open-path Fourier-transform infrared measurements for nonintrusive monitoring of gas turbine exhaust composition. Applied Optics, 44(11), 2189-2201.
- [4] Koehler, F., Small, G., Combs, R., Knapp, R., Kroutill, R. (2001). Automated detection of sulphur dioxide in stack emissions by passive Fourier transform infrared spectrometry. Vibrational Spectroscopy, 27(2), 97-107.
- [5] Wan, B., Small, G.W. (2008). Airborne passive Fourier transform infrared remote sensing of methanol vapour from industrial emissions. The Analyst, 133, 1776-1784.
- [6] Sulub Y., Small, G.W. (2007). Quantitative determination of ethanol in heated plumes by passive Fourier transform infrared remote sensing measurements. The Analyst, 132, 330-337.
- [7] Mroczka, J., Szczuczyński, D. (2013). Improved technique of retrieving particle size distribution form angular scattering measurements. J. Quant. Spectrosc. Radiat Transf., 129, 48-59.
- [8] Ravi, J., Lu, Y., Longuemart, S., Paoloni, S., Pfeiffer, S., Thoen, J., Glorieux, C. (2005). Optothermal depth profiling by neural network infrared radiometry signal recognition. Journal of Applied Physics, 97, 014701.
- [9] Pastorino, M. (2004). Recent inversion procedures for microwave imaging in biomedical, subsurface detection and non-destructive evaluation applications. Measurement, 36, 257-269.
- [10] Świrniak, G., Głomb, G, Mroczka, J. (2014). Inverse analysis of the rainbow for the case of low-coherent incydent light to determine the diameter of a glass fiber. Applied Optics, 53(19), 4239-4247.
- [11] Świrniak, G., Głomb, G., Mroczka, J. (2014). Inverse analysis of light scattered at a small angle for characterization of a transparent dielectric fiber. Applied Optics, 53(28), 7103-7111.
- [12] Egorov, O., Voitsekhovskaya, O., Kashirskiia, D., Tsvykc, R., Sazanovichc, V., Sherstobitovc, M. (2014). The optical method for determining the thermodynamic parameters of hot gases. J. Quant. Spectrosc. Radiat Transf., 147, 38-46.
- [13] Bourayou, R., Vaillon, R., Sacadura, J.F. (2002). FTIR low resolution emission spectrometry of a laboratory-scale diffusion flame: experimental set-up. Experimental Thermal and Fluid Science, 26, 181-187.
- [14] Parameswaran, T., Hughes, R., Gogolek, P., Hughes, P. (2014). Gasification temperature measurement with flame emission spectroscopy. Fuel, 134, 579-587.
- [15] Boulet, P., Parent, G., Acem, Z., Collin, A., Sero-Guillaume, O. (2011). On the emission of radiation by flames and corresponding absorption. Fire Safety Journal, 46, 21-26.
- [16] Nam, H.J. Kwon, O.J. (2014). Infrared radiation modeling of NO, OH, CO, H2O and CO2 for emissivity/radiance prediction at high temperature. Infrared Physics & Technology, 67, 283-291.
- [17] Fleckl, T., Jager, H., Obernberger, I. (2002). Experimental verification of gas spectra calculated for high temperatures using the HITRAN/HITEMP database. J. Phys. D: Appl. Phys., 38, 3138-3144.
- [18] Mroczka, J., Szczuczyński, D. (2009). Inverse problems formulated in terms of first-kind Fredholm integral equations in indirect measurement. Metrol. Meas. Syst., 16(3), 333-357.
- [19] Sharkov, E.A. (2003). Passive Microwave Remote Sensing of the Earth, Springer Verlag, Berlin, 526-530.
- [20] Krasnopolsky, V.M., Schiller, H. (2003). Some neural network applications in environmental sciences. Part I: forward and inverse problems in geophysical remote measurements. Neural Networks, 16, 321-334.
- [21] Ren, T., Modest, M. F., Fateev, A., Clausen, S. (2015). An inverse radiation model for optical determination of temperature and species concentration: Development and validation. J. Quant. Spectrosc. Radiat Transf., 151, 198-209.
- [22] Lim, J., Sivathanu, Y., Ji, J., Gore, J. (2004). Estimating scalars from spectral radiation measurements in a homogeneous hot gas layer. Combustion and Flame, 137, 222-229.
- [23] Spelman, J., Parker, T.E., Carter, C.D. (2003). Fiber-coupled multiple-line emission measurements to determine temperature, CO2, and H2O. J. Quant. Spectrosc. Radiat Transf., 76, 309-330.
- [24] Bak, J., Clausen, S. (2002). FTIR emission spectroscopy methods and procedures for real time quantitative gas analysis in industrial environments. Measurement Science and Technology, 13, 150-156.
- [25] Clausen, S. (1995). Infrared combustion diagnostics in fluctuating flames. Proc. of SPIE, 2506, 30-44.
- [26] Gross, K.C., Bradley, K.C., Perram, G.P. (2010). Remote Identification and quantification of Industrial Smokestack Effluents via Imaging Fourier-Transform Spectroscopy. Environmental Science & Technology, 44, 9390-9397.
- [27] Rego-Barcena, S., Saari, R., Mani, R., El-Batroukh, S., Thomson, M.J. (2007). Real time, non-intrusive measurement of particle emissivity and gas temperature in coal-fired power plants. Measurement Science and Technology, 18, 3479-3488.
- [28] Garcia-Cuesta, E., Galvan, I. M., de Castro, A.J. (2008). Multilayer perceptron as an inverse model in a ground-based remote sensing temperature retrieval problem. Engineering Application of Artificial Intelligence, 21, 26-34.
- [29] Garcia-Cuesta, E., de Castro, A.J., Galvan, I.M., Lopez, F. (2014). Temperature Profile Retrieval in Axisymmetric Combustion Plumes Using Multilayer Perceptron Modeling and Spectral Feature Selection in the Infrared CO2 Emission Band. Applied Spectroscopy, 68(8), 900-908.
- [30] Cięszczyk S. (2014). Non-Luminous Flame Temperature Determination Method Based on CO2 Radiation Intensity. Acta Physica Polonica A, 126(6), 1235-1240.
- [31] Vitkin, E., Zhdanovich, O., Tamanovich, V., Senchenko, V., Dozhdikov, V., Ignatiev, M., Smurov I. (2002). Determination of the temperature and concentration for the products of combustion of hydrocarbon fuel on the basis of their infrared self-radiation. International Journal of Heat and Mass Transfer, 45, 1983-1999.
- [32] Kim, H.K., Song, T.H. (2002). Measurement of gas temperature distributions in a test furnace using spectral remote sensing. J. Quant. Spectrosc. Radiat Transf., 73, 517-528.
- [33] Kim, H.K., Song, T.H. (2004). Characteristics of SRS inversion for measurement of temperature and CO2 concentration profile of a combustion gas layer. J. Quant. Spectrosc. Radiat Transf., 86, 181-199.
- [34] Al Khoury, P., Chavent, G., Clements, F., Herve, P. (2005). Inversion of spectroscopic data, application on CO2 radiation of flame combustion. Inverse Problems in Science and Engineering, 13(3), 219-240.
- [35] Song, T.H. (2008). Spectral Remote Sensing for Furnaces and Flames. Heat Transfer Engineering, 29(4), 417-428.
- [36] Kim, H.K., Song, T.H. (2005). Determination of the gas temperature profile in a large-scale furnace using a fast/efficient inversion scheme for the SRS technique. J. Quant. Spectrosc. Radiat Transf., 93, 369-381.
- [37] Jellison, G.P., Miller, D.P. (2006). Determination of gas plume temperature from molecular emission spectra. Optical Engineering, 45(1), 016201-1-8.
- [38] Ko, J.Y., Kim, H.K., Song, T.H. (2009). Inversion of combustion gas temperature/concentration profile with radiation/turbulence interaction using SRS. J. Quant. Spectrosc. Radiat Transf., 110, 1199-1206.
- [39] Woo, S.W., Song, T.H. (2002). Measurement of gas temperature profile using spectral intensity from CO2 4,3um band. International Journal of Thermal Sciences, 41, 883-890.
- [40] Depraz S., Perrin M.Y., Soufiani A. (2012). Infrared emission spectroscopy of CO2 at high temperaturę. Part I: Experimental setup and source characterization, J. Quant. Spectrosc. Radiat Transf., 113, 1-13.
- [41] Depraz, S., Perrin, M.Y., Soufiani, A. (2012). Infrared emission spectroscopy of CO2 at high temperaturę. Part II: Experimental results and comparisons with spectroscopic databases, J. Quant. Spectrosc. Radiat Transf., 113, 14-25.
- [42] Soufiani, A., Martin, J., Rolon, J., Brenez L. (2002) Sensitivity of temperature and concentration measurements in hot gases from FTIR emission spectroscopy. J. Quant. Spectrosc. Radiat Transf., 73, 317-327.
- [43] Hilton, M., Lettington, A.H., Mills, I.M. (1995). Quantitative analysis of remote gas temperatures and concentrations from their infrared emission spectra. Measurement Science and Technology, 6, 1236-1241.
- [44] Tank, V. (1999). Spectrometric hot gas remote sensing - investigations on calibration errors. Journal of Molecular Structure, 482-483, 545-550.
- [45] Grosch, H., Fateev, A., Nielsen, K.L., Clausen, S. (2013). Hot gas flow cell for optical measurements on reactive gases. J. Quant. Spectrosc. Radiat Transf., 130, 392-399.
- [46] Harley, J.L., Rankin, B.A., Blunck, D.L., Gore, J.P., Gross, K.C. (2014). Imaging Fourier-transform spectrometer measurements of a turbulent nonpremixed jet flame. Optics Letters, 39(8), 2350-2353.
- [47] Mroczka, J., Szczuczyński, D. (2010). Improved regularized solution of the inverse problem in turbidimetric measurements. Applied Optics, 49(24), 4591-4603.
- [48] Mroczka, J., Szczuczyński, D. (2012). Simulation research on improved regularized solution of inverse problem in spectral extinction measurements. Applied Optics, 51(11), 1715-1723.
- [49] Mroczka, J. (2013). The cognitive process in metrology. Measurement, 46, 2896-2907.
- [50] Clausen, S., Bak, J. (2002). A hot gas facility for high-temperature spectrometry. Measurement Sciences and Technology, 13, 1223-1229.
- [51] Evseev, V., Fateev, A., Clausen, S. (2010). High-resolution transmission measurements of CO2 at high temperatures for industrial applications. J. Quant. Spectrosc. Radiat Transf, 113, 222-2233.
- [52] Becher, V., Clausen, S., Fateev, A., Spliethoff, H. (2011). Validation of spectral gas radiation models under oxyfuel conditions. Part A: Gas cell experiments. International Journal of Greenhouse Gas Control, 5S, S76-S99.
- [53] Czerwiński, M., Mroczka, J., Girasole, T., Gouesbet, G., Grehan, G. (2001). Light-Transmittance Predictions Under Multiple-Light-Scattering Conditions. I. Direct Problem: hybrid-Method Approximation. Applied Optics, 40(9), 1514-1524.
- [54] Czerwiński, M., Mroczka, J., Girasole, T., Gouesbet, G., Grehan, G. (2001). Light-Transmittance Predictions Under Multiple-Light-Scattering Conditions. II. Inverse Problem: Particle Size Determination. Applied Optics, 40(9), 1525-1531.
- [55] Rothman, L.S., Gordon, I.E., Barber, R.J., Dothe, H., Gamache, R.R., Goldman, A., Perevalov, V.I., Tashun, S.A., Tennyson, J.. (2010). HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf., 111, 2139-2150.
- [56] Wójcik, W., Cięszczyk, S., Golec, T. (2010). Narrow-band spectra models for diagnostic of gases produced during the biomass production. L. Pawłowski, M. Dudzińska, A. Pawłowski (eds.). Environmental Engineering III, CRC Press, 597-601.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e7e99fb-d6de-48af-9515-1d94109e7b54