Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioaccumulation of Macro- and Microelements in Herbaceous Plants in the River Valley

Treść / Zawartość
Warianty tytułu
Języki publikacji
The research was done in the upper course of the Kamienna Creek which is the left-bank tributary of River Słupia situated in the northern part of Poland within Leśny Dwór Forest Inspectorate area. The aim of the study was the comparison of accumulation properties of herbaceous plants in spring niches in relation to macro- and microelements. The shoots of research plant species showed a good supply of macro- and micronutrients. The highest contents of nutrients were found in the shoots of Athyrium filix-femina (Ni), Caltha palustris (Mg, Ca, Sr), Cardamine amara (K, Zn, Fe, Al), Carex rostrata (Mn) and Solanum dulcamara (N, P, Cu), and the lowest in shoots of Ajuga reptans (P, Zn, Mn), Cardamine amara (N, Cu) and Carex rostrata (K, Mg, Ca, Sr, Ni, Fe, Al). Herbaceous plants accumulated from 1767.23 mmol c<subᴄ.kg-1 (Carex rostrata) to 2739.87 (Caltha palustris) of all the analyzed elements. Macronutrients dominated in all herbaceous plant species (>99%), and microelements ranged from 0.33% in Solanum dulcamara to 0.67% in shoots Cardamine amara. The share of nitrogen was from 38.8% to 56.8% of this amount, phosphorus from 2.9% to 3.9%, potassium from 28.5% to 40.6%, magnesium from 4.8% to 7.6%, and calcium from 4.6% to 16.4%. A large share of iron (from 33.7% Athyrium filix-femina to 39.5% Caltha palustris), manganese (from 9.2% Cardamine amara to 28.8% Carex rostrata) and aluminum (from 16.7% Carex rostrata to 40.8% Cardamine amara) in total measured components indicates excessive downloading them through plants. During the three years of research done in spring niches, it was found that some plant species take up nutrients in the quantities exceeding their physiological demand, which enables to use some of them for forming e.g. artificial wetlands, stopping many impurities and forming protective barriers.
Opis fizyczny
Bibliogr. 29 poz., tab., rys.
  • Pomeranian University in Słupsk, Institute of Biology and Environmental Protection, Arciszewskiego 22b, 76-200 Słupsk, Poland
  • Warsaw University of Life Sciences, Department of Soil Environment Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
  • 1. Czerwiński Z., Pracz J. 1995. Content of mineral components in the over-ground parts of herb layer plants in the Sphagno girgensohnii-Piceetum community. Pol. Ecol. Stud. 21(2), 195–205.
  • 2. Décamps H., Pinay G., Naiman R.J., Petts G.E., McClain M.E., Hillbricht-Ilkowska A., Hanley T.A., Holmes R.M., Quinn J., Gibert J., Tabacchi A.M.P., Schiemer F., Tabacchi E., Zalewski M. 2004. Riparian zones: where biogeochemistry meets biodiversity in management practice. Pol. J. Ecol. 52, 3–18.
  • 3. Gworek B. 2006. The toxicity of aluminium environmental challenge (reviev of literature). Environ. Prot. Nat. Res. 29, 27–38. (in Polish)
  • 4. Hazlett P., Broad K., Gordon A., Sibley P., Butttle J., Larmer D. 2008. The importance of catchment slope to soil water N and C concentrations in riparian zones: implications for riparian buffer width. Can. J. For. Res. 38(1), 16–30.
  • 5. Hefting M., Clement J., Bienkowski P., Dowrick D., Guenat C., Butturini A., Topa S., Pinay G., Verhoeven J.T.A. 2005. The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe. Ecol. Eng. 24, 465–482.
  • 6. Horska-Schwarz S., Spałek K. 2008. Structure and Function of Landscape Systems: Meta-analyses, Models, Theories and Their Applications. Probl. Land. Ecol. 21, 311–318.
  • 7. Jansson R., Hjalmar L., Eva J., Clemens A. 2007. The importance of groundwater discharge for plant species number in riparian zones. Ecology, 88, 131–139.
  • 8. Jonczak J., Parzych A., Sobisz Z. 2014. The content and profile distribution patterns of Cu, Ni and Zn in Histosols of headwater areas in the valley of Kamienna Creek (northern Poland). Balt. Coastal Zone, 18, 5–13.
  • 9. Jonczak J., Parzych A., Sobisz Z. 2015. Decomposition of four tree species leaf litters in headwater riparian forest. Baltic Forestry, 21(1), 133-143.
  • 10. Jonczak J., Olejniczak M., Parzych A., Sobisz Z. 2016. Dynamics, structure and chemistry of litterfall in headwater riparian forest in the area of Middle Pomerania. J. Elem., 21(2), 383–394.
  • 11. Kabata-Pendias A., Pendias H. 1999. Biogeochemia pierwiastków śladowych. PWN, Warszawa.
  • 12. Karlsson O.M., Richardson J.S., Kiffney P.M. 2005. Modelling organic matter dynamics in headwater streams of south-western British Columbia. Can. Ecol. Model., 183, 463–476.
  • 13. Krzywy E. 2007. Nutrition of plants. West Pomeranian University of Technology Szczecin Press, Szczecin.
  • 14. Kuglerova L., Jansson R., Agren A., Laudon H., Malm-Renofalt B. 2014. Groundwater discharge creates hotspots of riparian plant species richness in a boreal forest stream network. Ecology, 95, 715–725.
  • 15. Maine M.A., Sune N., Hadad H., Sanchez G., Bonetto C. 2006. Nutrient and metal remove in a constructed wetland for wastewater treatment from a metallurgic industry. Ecol. Eng., 26, 341–347.
  • 16. Małek S., Astel A., Krakowian K., Opałacz J. 2010. Ocena jakości wód źródlanych w rejonie Skrzycznego i Baraniej Góry. Sylwan, 154(7), 499–505.
  • 17. Mirek Z., Piękoś-Mirkowa H., Zając A., Zając M. 2002. Flowering plants and pteridophytes of Poland. A checklist. Biodiversity of Poland, 1, 9–442.
  • 18. Osadowski Z. 2006. Threatened, protected and rate species of vascular plants in spring complexes in the central part of Polish Pomerania. Biodiversity Research and Conservation, 1–2, 174–180.
  • 19. Ostrowska A., Porębska G. 2002. Chemical composition of plants, its interpretation and use in environmental protection. Instytut Ochrony Środowiska, Warszawa. (in Polish) 23. Parzych A. 2015. Accumulation of the macro− and microelements in mosses in the Słowiński National Park. Sylwan 159(4), 345−352. (in Polish)
  • 20. Parzych A., Jonczak J., Sobisz Z. 2016. Changes of water chemistry in mid-forest headwater streams in the valley of the Kamienna (Middle Pomerania). Sylwan, 160(10), 871–880. (in Polish)
  • 21. Parzych A., Jonczak J., Sobisz Z. 2017. Bioaccumulation of macronutrients in the herbaceous plants of mid-forest spring niches. Balt. For., 23(2), 384–393.
  • 22. Parzych A., Jonczak J., Sobisz Z. 2018. Bioaccumulation of macro- and micronutrients in herbaceous plants of headwater areas – a case study from northern Poland. J. Elem., 23(1), 231–245.
  • 23. Pielech R., Anioł-Kwiatkowska J., Szczęśniak E. 2015. Landscape-scale factors driving Plant species composition in mountain streamside and spring riparian forests. For. Ecol. Manag., 347, 217–227.
  • 24. Raty M., Uusi-Kamppa J., Yli-Halla M., Rasa K., Pietola L. 2010. Phosphorus and nitrogen cycles in the vegetation of differently manager buffet zones. Nutr. Cyc. Agroecosys., 86, 121–132.
  • 25. Samecka-Cymerman A., Kempers J. 2007. Heavy metals in aquatic macrophytes from two small rivers polluted by urban, Agricultural and Textile Industry Sewages SW Poland. Arch. Environ. Contam. Toxicol., 53, 198–206.
  • 26. Smal H., Salomons W. 1995. Acidification and its long-term impact on metal mobility. In: Biogeodynamics of pollutants in soils and sediments. Springer-Verlag, Berlin 193–212.
  • 27. Tufekcioglu A., Raich J., Isenhart T., Schultz R. 2003. Biomass, carbon and nitrogen dynamics of multi-species riparian buffers within an agricultural watershed in Iowa, USA. Agroforestry Systems 57, 187–198.
  • 28. Veselkin D.V., Konoplenko M.A., Betekhtina A.A. 2014. Means for soil nutrient uptake in sedges with different ecological strategies. Rus. J. Ecol., 45, 6, 547–554.
  • 29. Viers J.H., Fremier A.K., Hutchinson R.A., Quinn J.F., Thorne J.H., Vaghti M.G. 2012. Multiscale patterns of riparian plant diversity and implications for restoration. Res. Ecol., 20, 160–169.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.