Kinga MENCEL, Dorota CZARNECKA-KOMOROWSKA

e-mail: kinga.mencel@put.poznan.pl

Instytut Technologii Materiałów, Wydział Budowy Maszyn i Zarządzania, Politechnika Poznańska, Poznań

Ocena możliwości wykorzystania rozdrobnionych odpadów tłoczyw BMC

Wstęp

Metodyka

Analiza właściwości kompozytu obejmowała:

- Badania wskaźnika szybkości płynięcia MFR (Melt Flow Rate) wykonane z użyciem plastometru MP-IIRT-M (prod. rosyjskiej) wg [PN-EN ISO 1133: 2002] w temperaturze 230°C, przy obciążeniu 2,16 kg i przy stałym czasie odniesienia S = 600 s.
 - Próby statycznego rozciągania wykonane na Instron model 4481 wg [PN-EN ISO 527-2:1998]. Badania prowadzono przy szybkości rozciągania 50 mm/min w temp. 20±3°C.
 - Badania udarności próbek z karbem wykonane zgodnie z [PN-EN ISO 179-1:2002], przy zastosowaniu młota Charpy'ego, firmy Instron typ PW-5.
 - Badania metodą dynamicznej analizy termomechanicznej wykonane z wykorzystaniem aparatu DMTA Anton Paar MCR 301. Stosowano częstotliwość skręcania próbki 1 Hz oraz szybkość ogrzewania 3°C/min (w zakresie temperatur -100÷200°C. Temperaturę przejść relaksacyjnych wyznaczano na podstawie krzywych zmian tangensa kąta stratności mechanicznej tg δ w funkcji temperatury. Analizowano również zmiany modułu zachowawczego E' w funkcji temperatury.
 - Ocenę struktury nanokompozytów termoplastycznych o osnowie PA 6 oraz POM wykonano metodą różnicowej kalorymetrii skaningowej (Differential Scanning Calorimetry) stosując aparat DSC 204 F1 Phoenix firmy Netzsch-Gerätebau GmbH.
 - Podczas badań stosowano następującą procedurę zmian temperatury:
 - ogrzewanie próbek z szybkością 10°C/min w zakresie temperatur od 20 do 270°C,
 - następnie ochładzanie z szybkością 5°C/min do temperatury -50°C,
 - potem ponowne ogrzewanie z szybkością 10°C/min.

Wyniki badań i dyskusja

Masowy wskaźnik szybkości płynięcia (MFR) jest miarą płynności tworzywa polimerowego i pośrednią miarą lepkości, przy czym im większa jest lepkość tworzywa, tym wartość *MFR* jest mniejsza. Zmie-

rzone wartości tego wskaźnika zestawiono w tab. 2.

Tab. 2. Wskaźnik szybkości płynięcia niemodyfikowanego	PA
oraz kompozytów PA6/BMC	

Próbka	MFR, g/10 min
PA6	4,85
PA6/10% mas. BMC	2,11
PA6/20% mas. BMC	3,43
PA6/30% mas. BMC	1,83

Wiadomo, że w PA6 występują trzy przejścia relaksacyjne α , β i γ . Temperatury, w których się pojawiają zależą od historii termicznej próbki, zawartości wilgoci oraz metody badania [*Pramoda*, 2004].

Na krzywych zmian współczynnika stratności mechanicznej tg δ w funkcji temperatury (Rys. 1) zaobserwować można tylko dwa przejścia relaksacyjne: α oraz β . Jak widać wartość tg δ poniżej temp. ok. –110°C zwiększa się, co świadczy o początku zachodzenia relaksacji γ . Ze względu na to, że badania DMTA wykonywano w zakresie temperatury od –100°C do 200°C przejście to nie zostało jednak w pełni zarejestrowane. Pik relaksacji α przypisany jest temperaturze zeszklenia T_g poliamidu i spowodowany jest ruchami segmentów makrocząsteczek w obszarze amorficznym.

Im mniejszy stopień krystaliczności PA6, tym maksimum relaksacji a staje się mniejsze i przesuwa się w kierunku niższej temperatury [Kelar,

Tworzywa termoutwardzalne, a zwłaszcza kompozyty wzmocnione włóknem szklanym, określane były przez długi czas jako nienadające się do recyklingu. Powodem tego były nieodwracalne procesy, które zachodzą podczas utwardzania tworzyw utwardzalnych i prowadzą do powstawania trwałych, przestrzennie usieciowanych struktur. Dodatkową wadą jest wysoka zawartość napełniaczy i włókien wzmacniających [*Nowaczek, 1999*].

Najczęstszym sposobem pozbycia się tych odpadów jest ich składowanie na wysypiskach. Z punktu widzenia ochrony środowiska te odpady nie są zagrożeniem, ponieważ nie wydzielają żadnych szkodliwych substancji i są nieaktywne. Problemy stwarza jednak ich rosnąca ilość i niezniszczalność, a także koszty składowania, zwłaszcza wielkogabarytowych wyrobów z tłoczyw BMC (*Bulk Molding Compounds*) / SMC (*Sheet Moulding Compounds*) [*Błędzki, 1997*].

Recykling cząstkowy, nazywany też recyklingiem BMC/SMC, opiera się na zastępowaniu części napełniaczy i włókien wzmacniających odpowiednio rozdrobnionym tłoczywem BMC/SMC. Istotną zasadą w tej metodzie jest stosowanie recyklatów jako pełnowartościowego materiału wzmacniającego, a nie tylko obniżającego cenę wyrobu. Metoda cechuje się prostotą, ponieważ nie wymaga dokładnego sortowania odpadów i zużytych części, a ponadto jej czułość na zanieczyszczenia jest mniejsza niż w przypadku tworzyw termoplastycznych. Kolejną zaletą jest możliwość pozyskiwania odpadów od różnych producentów i z różnych materiałów. Ważne jest tylko to, aby odpad miał ten sam rodzaj fazy ciągłej i wzmocnienia [*Haponiuk, 2008*]. Wśród ogromnej grupy tworzyw sztucznych istotny materiał konstrukcyjny stanowi poliamid 6 (PA6).

Celem przeprowadzonych badań była ocena możliwości wykorzystania rozdrobnionych odpadów tłoczywa BMC oraz analiza właściwości kompozytu wytworzonego z poliamidu 6 i ze wzmocnionego tłoczywa poliestrowego.

Badania doświadczalne

Materiały

W badaniach stosowano następujące surowce:

- hydrolityczny PA6 o nazwie handlowej *Tarnamid T-30* (kolor naturalny), produkcji *Zakładów Azotowych* w Tarnowie-Mościcach,
- odpad poprodukcyjny BMC firmy *EMABO* z Kościana.

Rozdrabnianie. Odpady poprodukcyjne rozdrobniono dwuetapowo. W pierwszym etapie rozdrabniano przy użyciu młyna nożowego *TRIA* następnie, mielono przy użyciu młynka ultra odśrodkowego firmy RETSCH *ZM 200* na sicie o wielkości oczek 0,5 μm.

Wytłaczanie. Próbki do badań najpierw wytłaczano z użyciem wytłaczarki jednoślimakowej firmy *Metalchem W25-30D* (Tab. 1), następnie wtryskiwano znormalizowane próbki do badań właściwości stosując wtryskarkę *Engel ES 80/20HLS* ze ślimakiem o średnicy 22 mm i stosunku L/D = 18.

Tab. 2 Parametry procesu wytłaczania

Strefa		Tem	peratura	Prędkość obrotowa		
Próbka	1	2	3	4	5	ślimaka, min⁻¹
PA6; PA6/10%BMC	229	222	218	198	176	50
PA6/20%BMC	232	226	222	201	179	50
PA6/30%BMC	240	235	229	204	181	30

Nr 6/2014

INŻYNIERIA I APARATURA CHEMICZNA

str. 383

Rys. 1. Zależnośc kąta stratności mechanicznej tg ò od temperatur niemodyfikowanego PA6 oraz kompozytów PA6/BMC

2006]. Na podstawie analizy wyników badań stwierdzono, że wartość T_g kompozytów jest mniejsza niż niemodyfikowanego PA6.

Z kolei na podstawie analizy zależności modułu zachowawczego *E*' od temperatury (Rys. 2) można zauważyć, że dodatek BMC zwiększa sztywność osnowy poliamidowej.

niemodyfikowanego PA6 oraz kompozytów PA6/BMC

Temperatura topnienia T_m materiałów polimerowych jest zależna od stopnia krystaliczności, masy cząsteczkowej, wielkości krystalitów. Na podstawie analizy wyników badań DSC (Tab. 3) stwierdzono, że wartość T_m dla modyfikowanego PA6 zarówno podczas pierwszego jak i drugiego grzania jest zbliżona do wartości temperatury mięknienia poliamidu 6 niemodyfikowanego.

W badanym zakresie stężeń tłoczywa BMC w osnowie poliamidowej nie stwierdzono istotnego wpływu napełniacza na stopień krystaliczności. Jedynie w kompozycie zawierającym 20% mas. BMC zauważyć można obniżenie stopnia krystaliczności o 7°C w przypadku pierwszego grzania oraz 4°C w przypadku drugiego grzania w stosunku do PA6 niemodyfikowanego.

Tab.	3.	Wyniki	badań	DSC	dla	PA6	oraz	kompozytów	PA6/BMC
------	----	--------	-------	-----	-----	-----	------	------------	---------

	Pier	wsze grz	anie	Chłodzenie	Drugie grzanie		
Kompozyt	T_m °C	X _c %	∆H _m J/g	T_{kr} °C	T_m °C	X _c %	∆H _m J/g
	-			-	-		
PA6	223,9	37,2	70,70	183,50	220,7	30,8	58,57
PA6/10% BMC	222,9	37,5	64,16	186,2	220,4	32,1	54,84
PA6/20% BMC	222,8	30,4	46,20	185,8	220,2	26,7	40,65
PA6/30% BMC	223,2	37,2	49,48	185,6	221,3	30,4	40,43

Wyniki badań cech wytrzymałościowych oznaczonych w próbie statycznego rozciągania oraz udarności zestawiono w tab. 4.

Tab. 4. Wyniki badań wytrzymałości na rozciąganie i udarności PA6 oraz kompozytów PA6/POSS

Kompozyt	Moduł sprężystości E MPa	Wytrzymałość na rozciąganie R _m MPa	Naprężenie przy umownej granicy pla- styczności MPa	Odkształcenia w chwili zerwania %	Udamość kJ/m ²
PA6	1862±19	74,8±0,5	30,1±3,0	66,7±6,97	17,9±3,1
PA6/10% BMC	1964±21	62,4±0,9	27,5±0,5	4,8±0,30	10,8±2,1
PA6/20% BMC	2112±17	57,1±0,6	25,4±0,3	4,7±0,28	11,6±2,0
PA6/30% BMC	2332±37	51,6±0,7	24,5±0,7	3,7±0,23	9,9±1,3

Wnioski

Na podstawie analizy wyników badań stwierdzono, że wprowadzenie tłoczywa BMC do osnowy poliamidowej powoduje wzrost sztywności PA6.

Stwierdzono również, że wytrzymałość na rozciąganie oraz wydłużenie dla kompozytów PA6/BMC maleje wraz z zawartością napełniacza.

LITERATURA

- Błędzki A. (Red.), 1997. Recykling materiałów polimerowych. WNT, Warszawa, 82-95 (ISBN: 8320421187, 9788320421187)
- Haponiuk J., 2008. *Tworzywa sztuczne w praktyce*. Verlag Dashofer, Warszawa (ISBN: 8375370525, 9788375370522)
- Kelar K., 2006. Technologia wytwarzania części maszyn z poliamidu 6 modyfikowanego nanocząstkami. Wyd. Politechniki Poznańskiej, Poznań (ISBN: 8371432399, 9788371432392)
- Nowaczek W., 1999. Tłoczywa poliestrowe z odpadami duroplastów. *Polimery*, **44**, nr 11-12, 758-763
- Pramoda K.P., Liu T., 2004. Effect of moisture on the dynamic mechanical relaxation of polyamide-6/clay nanocomposites. J. Polym. Sci., Part B: Polym. Phys., 42, nr 10, 1823-1830. DOI: 10.1002/polb.20061
- PN-EN ISO 527-2:1998. Tworzywa sztuczne Oznaczanie właściwości mechanicznych przy statycznym rozciąganiu – Część 2: Warunki badań tworzyw sztucznych przeznaczonych do prasowania, wtrysku i wytłaczania
- PN-EN ISO 1133: 2002. Tworzywa sztuczne Oznaczanie masowego wskaźnika szybkości płynięcia (MFR) i objętościowego wskaźnika szybkości płynięcia (MVR) tworzyw termoplastycznych
- PN-EN ISO 179-1:2002. Tworzywa sztuczne Oznaczanie udarności metodą Charpy'ego – Część 1: Nieinstrumentalne badanie udarności