PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Fiber Arrangement in the Bio-Laminate and Geometric Parameters on the Stability of Thin-Walled Angle Column Under Axial Compression

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study is to check how the change fiber configuration and geometric parameters affect the stability of a thin-walled angle column under compression. Buckling analysis of thin-walled structures made of bio-laminates was presented. Short angles with different configurations of reinforcing fibers and geometric parameters were studied. The laminate under analysis had a matrix made of epoxy resin reinforced with unidirectional flax fibers. The axially compressed structures were simply supported on both ends. Detailed numerical analyses were conducted by the finite element method using Abaqus software. The lowest two bifurcation loads and their corresponding eigenmodes were determined. Several configurations of unidirectional fiber arrangement with different width and length were tested. Results showed that the bio-laminate fiber configuration had a significant effect on the behavior of the compressed structure. Moreover, the change of geometrical parameters significantly influences the stability of the structure. In general, it was found that the bifurcation load decreased with the increase of the length of the L-profile column. However, increasing the flange width of the column resulted in a reduction of the bifurcation load (applies to a column with a length of 300 mm and longer). In paper the first stage of research is presented, which will be experimentally verified in subsequent studies.
Słowa kluczowe
Twórcy
  • Faculty of Mechanical Engineering, Department of Applied Mechanics, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Misnon M.I., Islam M.M., Epaarachchi J.A., Lau K.T. Potentiality of utilising natural textile materials for engineering composites applications. Mater. Des. 2014; 59: 359–368. DOI: 10.1016/j.mat-des.2014.03.022.
  • 2. Mohammed L., Ansari M.N.M., Pua G., Jawaid M., Islam M.S. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. Int. J. Polym. Sci. 2015; 243947: 1–15. DOI: 10.1155/2015/243947.
  • 3. Dittenber D.B., GangaRao H.V.S. Critical review of recent publications on use of natural composites in infrastructure. Composites Part A: Applied Science and Manufacturing. 2012; 43(8): 1419–1429. DOI: 10.1016/j.compositesa.2011.11.019.
  • 4. Pil L., Bensadoun F., Pariset J., Verpoest I. Why are designers fascinated by flax and hemp fibre composites?. Composites Part A: Applied Science and Manufacturing. 2016; 83: 193–205. DOI: 10.1016/j.compositesa.2015.11.004.
  • 5. Suriani M.J., Ilyas R.A., Zuhri M.Y.M., Khalina A., Sultan M.T.H., Sapuan S.M., Ruzaidi C.M., Wan F.N., Zulkifli F., Harussani M.M., Azman M.A., Radzi F.S.M., Sharma S. Critical Review of Natural Fiber Reinforced Hybrid Composites: Processing, Properties, Applications and Cost. Polymers. 2021; 13: 3514. DOI: 10.3390/polym13203514.
  • 6. Cheung H.Y., Ho M.P., Lau K.T., Cardona F., Hui D. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos. Part B. 2009; 40: 655–663. DOI: 10.1016/j.compositesb.2009.04.014.
  • 7. Gurunathan T., Mohanty S., Nayak S.K. A Review of the Recent Developments in Biocomposites Based on Natural Fibres and Their Application Perspectives. Compos. Part A. 2015; 77: 1–25. DOI: 10.1016/j.compositesa.2015.06.007.
  • 8. Batu T., Lemu H.G., Sirhabizuh B. Study of the Performance of Natural Fiber Reinforced Composites for Wind Turbine Blade Applications. Advances in Science and Technology Research Journal. 2020; 14(2): 67–75. DOI: 10.12913/22998624/118201.
  • 9. A El Sawi I., Bougherara H., Zitoune R., Fawaz Z. Influence of the Manufacturing Process on the Mechanical Properties of Flax/Epoxy Composites. Journal of Biobased Materials and Bioenergy. 2014; 8(1): 69–76. DOI: 10.1166/jbmb.2014.1410.
  • 10. Strohrmann K., Hajek M. Bilinear approach to tensile properties of flax composites in finite element analyses. J Mater Sci. 2019; 54: 1409–1421. DOI: 10.1007/s10853-018-2912-1.
  • 11. Mahboob Z., El Sawi I., Zdero R., Fawaz Z., Bougherara H. Tensile and compressive damaged response in Flax fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing. 2017; 92: 118–133. DOI: 10.1016/j.compositesa.2016.11.007.
  • 12. Nicolinco C., Mahboob Z., Chemisky Y., Meraghni F., Oguamanam D., Bougherara H. Prediction of the compressive damage response of flax-reinforced laminates using a mesoscale framework. Composites Part A: Applied Science and Manufacturing. 2021; 140: 106153. DOI: 10.1016/j.compositesa.2020.106153.
  • 13. Tor-Świątek A., Garbacz T. Effect of Abiotic Degradation on the Colorimetric Analysis, Mechanical Properties and Morphology of PLA Composites with Linen Fibers. Advances in Science and Technology Research Journal. 2021; 15(1): 99–109. DOI: 10.12913/22998624/130792.
  • 14. Díaz-Álvarez A., Jiao-Wang L., Feng C., Santiuste C. Energy Absorption and Residual Bending Behavior of Biocomposites Bumper Beams. Compos. Struct. 2020; 245: 112343. DOI: 10.1016/j.comp-struct.2020.112343.
  • 15. Jiao-Wang L., Loya J.A., Santiuste C. On the Numerical Modeling of Flax/PLA Bumper Beams. Materials. 2022; 15: 5480. DOI: 10.3390/ma15165480.
  • 16. Huner U. Effect of water absorption on the mechanical properties of flax fiber reinforced epoxy composites. Advances in Science and Technology Research Journal. 2015; 9(26): 1–6. DOI: 10.12913/22998624/2357.
  • 17. Fehri M., Vivet A., Dammak F., Haddar M., Keller C.A. Characterization of the Damage Process under Buckling Load in Composite Reinforced by Flax Fibres. Journal of Composites Science. 2020; 4(3): 85. DOI: 10.3390/jcs4030085.
  • 18. Gopalan V., Suthenthiraveerappa V., David J.S., Subramanian J., Annamalai A.R., Jen C. P. Experimental and Numerical Analyses on the Buckling Characteristics of Woven Flax/Epoxy Laminated Composite Plate under Axial Compression. Polymers. 2021; 13(7): 995. DOI: 10.3390/polym13070995.
  • 19. Liu Q., Hughes M. The fracture behaviour and toughness of woven flax fibre reinforced epoxy composites. Compos. Part. A Appl. Sci. Manuf. 2008; 39: 1644–1652. DOI: 10.1016/j.composite-sa.2008.07.008.
  • 20. Ryzińska G., Janowski G., Bąk Ł. Modeling of Compression Test of Natural Fiber Composite Sections. Advances in Science and Technology Research Journal. 2021; 15(2): 138–147. DOI: 10.12913/22998624/133486.
  • 21. Bambach M.R. Compression strength of natural fibre composite plates and sections of flax, jute and hemp. Thin-Walled Structures. 2017; 119: 103–113. DOI: 10.1016/j.tws.2017.05.034.
  • 22. Gawryluk J., Teter A. Experimental-numerical studies on the first-ply failure analysis of real, thin-walled laminated angle columns subjected to uniform shortening. Composite Structures. 2021; 269: 114046. DOI: 10.1016/j.compstruct.2021.114046.
  • 23. Gawryluk J. Impact of Boundary Conditions on the Behavior of Thin-Walled Laminated Angle Column under Uniform Shortening. Materials. 2021;14(11): 2732. DOI: 10.3390/ma14112732.
  • 24. Gawryluk J. Post-buckling and limit states of a thin-walled laminated angle column under uniform shortening. Engineering Failure Analysis. 2022; 139: 106485. DOI: 10.1016/j.engfailanal.2022.106485.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e6f6fe6-d672-4b4c-9fb4-1aac6970bff2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.