PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Highlighting Volcanic Outcrops by Mapping Geological Lineaments Using Satellite Data in the Saka Region, North-East Morocco

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Saka region and its environs are situated in the northeastern part of Morocco. This study aimed to optimize automated lineament extraction based on the comparing of Landsat-8 optical satellite data with Sentinel-2B for enhanced analysis. The research delved into the structural lineaments within the Saka region, with the objective of advancing the understanding of lineament extraction techniques. Remote sensing techniques were employed to extract and map these lineaments Furthermore, the study sought to elucidate the distribution and genesis of volcanism in the Saka region and its surroundings in the context of geodynamics. The availability of optical and multispectral remote sensing datasets, including those from Landsat-8 OLI and Sentinel-2B, characterized by medium and high spatial resolutions, enhances the efficiency and simplicity of lineament mapping – an essential component of any structural geological investigation. However, due to the differences in spatial resolution and sensitivity to land cover, the outcomes from these diverse data sources were derived with varying resolutions display variability. The spatial resolution of the images significantly influences the precision and clarity of the retrieved lineaments. The findings underscore a strong correlation between lineament directions (primarily NE-SW, E-W, NW-SE) and faults, i.e., correspond to the distribution of volcanic outcrops in the Saka area and its vicinity. For validation purposes, the lineaments extracted through directional filtering were compared to the manually obtained lineaments, alongside lineaments digitized from the pre-existing neotectonic map (faults) as well as satellite images depicting lineaments in the study area. Density analysis was employed to investigate the correlation between the concentration of lineaments and the distribution of pre-existing faults. Additionally, the geological map was utilized to refine the correlation between density distribution and the spatial orientations of volcanic rock formations in the study area.
Twórcy
  • Sidi Mohamed Ben Abdellah University, Polydisciplinary Faculty of Taza, Natural Resources and Environment Laboratory, Department of Geology, 1223, Fez, Morocco
  • Sidi Mohamed Ben Abdellah University, Faculty of Science and Technology, Engineering Sciences and Techniques Center, Environment Department, 1223, Fez, Morocco
autor
  • Sidi Mohamed Ben Abdellah University, Polydisciplinary Faculty of Taza, Natural Resources and Environment Laboratory, Department of Geology, 1223, Fez, Morocco
  • Sidi Mohamed Ben Abdellah University, Polydisciplinary Faculty of Taza, Natural Resources and Environment Laboratory, Department of Geology, 1223, Fez, Morocco
  • Moulay Ismail University, Faculty of Sciences, Geoengineering and Environment Laboratory, Research Group “Water Sciences and Environment Engineering”, Department of Geology, 50050, Meknes, Morocco
  • Vrije Universiteit Brussels (VUB), Hydrology and Hydraulic Engineering Department, 1050, Brussels, Belgium
  • Abdelmalek Essaadi University, National School of Applied Sciences Al Hoceima, Water and Environment Management, Laboratory of Applied Sciences (LSA), 93030, Tétouan, Morocco
Bibliografia
  • 1. Abdelouhed F., Ahmed A., Abdellah A., Mohammed I. 2021. Lineament mapping in the Ikniouen area (eastern anti-atlas, Morocco) using Landsat-8 Oli and SRTM data. Remote sensing applications: society and environment, 23, 100606.
  • 2. Abdullah A., Nassr S., Ghaleeb A. 2013. Landsat ETM-7 for lineament mapping using automatic extraction technique in the SW part of Taiz Area, Yemen. Global Journal of Human-Social Science Research, 13, 34-38.
  • 3. Adiri Z., El Harti A., Jellouli A., Lhissou R., Maacha L., Azmi M., Zouhair M., Bachaoui E.M. 2017. Comparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction: A case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas. Advances in Space Research, 60, 2355-2367.
  • 4. Ahmadi H., Pekkan E. 2021. Fault-based geological lineaments extraction using remote sensing and GIS – a review. Geosciences, 11, 183.
  • 5. Alshayef M.S., Mohammed A.M., Javed A., Albaroot M.A. 2017. Manual and automatic extraction of lineaments from multispectral image in part of Al-Rawdah, Shabwah, Yemen by using remote sensing and GIS technology. International Journal of New Technology and Research 3, 263346.
  • 6. Amar N., Khattach D., Kaufmann O. 2015. Etude quantitative des linéaments magnétiques du Nord du Maroc.
  • 7. Arian M., Nouri R. 2015. Lineament Tectonics and Mineralizatin in Tarom Area, North Iran. Open Journal of Geology 5, 115.
  • 8. Begeman C., Helder D., Leigh L., Pinkert C. 2022. Relative Radiometric Correction of Pushbroom Satellites Using the Yaw Maneuver. Remote Sensing, 14, 2820.
  • 9. Bernini M., Boccaletti M., Gelati R., Moratti G., Papani G., Mokhtari J.E. 1999. Tectonics and sedimentation in the Taza-Guercif Basin, Northern Morocco: Implications for the Neogene Evolution of the Rif-Middle Atlas Orogenic system. Journal of Petroleum Geology, 22, 115-128.
  • 10. Bhuiyan C. 2015. Hydrological characterisation of geological lineaments: a case study from the Aravalli terrain, India. Hydrogeology Journal, 23, 673.
  • 11. Burns K.L., Brown G.H. 1978. The human perception of geological lineaments and other discrete features in remote sensing imagery: Signal strengths, noise levels and quality. Remote Sensing of Environment, 7, 163-176.
  • 12.Caumon G., Collon-Drouaillet P., Le Carlier de Veslud C., Viseur S., Sausse J. 2009. Surface-based 3D modeling of geological structures. Mathematical geosciences, 41, 927-945.
  • 13. Chaabouni R., Bouaziz S., Peresson H., Wolfgang J. 2012. Lineament analysis of South Jenein Area (Southern Tunisia) using remote sensing data and geographic information system. The Egyptian Journal of Remote Sensing and Space Science, 15, 197-206.
  • 14. Cooley T., Anderson G.P., Felde G.W., Hoke M.L., Ratkowski A.J., Chetwynd J.H., Gardner J.A., Adler-Golden S.M., Matthew M.W., Berk A. 2002. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation, in: IEEE international geoscience and remote sensing symposium. IEEE, 1414-1418.
  • 15. Corgne S., Magagi R., Yergeau M., Sylla D. 2010. An integrated approach to hydro-geological lineament mapping of a semi-arid region of West Africa using Radarsat-1 and GIS. Remote Sensing of Environment, 114, 1863-1875.
  • 16. Das S., Pardeshi S.D., Kulkarni P.P., Doke A. 2018. Extraction of lineaments from different azimuth angles using geospatial techniques: a case study of Pravara basin, Maharashtra, India. Arabian Journal of Geosciences, 11, 1-13.
  • 17. EL Kati I. 2017. Evolution géodynamique du bassin néogène de Guercif (Maroc): Télédetection, Tectonique et Magnétostratigraphie (Thesis). Ibn Tofail, Kenitra, Maroc.
  • 18. El Kati I., Nakhcha C., El Bakhchouch O., Tabyaoui H. 2018. Application of Aster and Sentinel-2A Images for geological mapping in arid regions: The Safsafate Area in the Neogen Guercif basin, Northern Morocco. Int. J. Adv. Remote Sens. GIS, 7, 2782-2792.
  • 19. Elaaraj A., Lhachmi A., Tabyaoui H., Alitane A., Varasano A., Hitouri S., El Yousfi Y., Mohajane M., Essahlaoui N., Gueddari H. 2022. Remote Sensing Data for Geological Mapping in the Saka Region in Northeast Morocco: An Integrated Approach. Sustainability, 14, 15349.
  • 20.El-Sawy K., Ibrahim A.M., El-Bastawesy M.A., El-Saud W.A. 2016. Automated, manual lineaments extraction and geospatial analysis for Cairo-Suez district (Northeastern Cairo-Egypt), using remote sensing and GIS. International Journal of Innovative Science, Engineering & Technology, 3, 491-500.
  • 21. Glasser N.F., Ghiglione M.C. 2009. Structural, tectonic and glaciological controls on the evolution of fjord landscapes. Geomorphology, 105, 291-302.
  • 22. Hashim M., Ahmad S., Johari M.A.M., Pour A.B. 2013. Automatic lineament extraction in a heavily vegetated region using Landsat Enhanced Thematic Mapper (ETM+) imagery. Advances in Space Research, 51, 874-890.
  • 23. Hein J.R., Mizell K., Koschinsky A., Conrad T.A. 2013. Deep-ocean mineral deposits as a source of critical metals for high-and green-technology applications: Comparison with land-based resources. Ore Geology Reviews, 51, 1-14.
  • 24. Hung L.Q., Batelaan O., De Smedt F. 2005. Lineament extraction and analysis, comparison of LAND-SAT ETM and ASTER imagery. Case study: Suoimuoi tropical karst catchment, Vietnam, in: Remote sensing for environmental monitoring, GIS applications, and geology V. SPIE, 182-193.
  • 25. Huntington J.F., Raiche A.P. 1978. A multi-attribute method for comparing geological lineament interpretations. Remote Sensing of Environment, 7, 145-161.
  • 26.Javhar A., Chen X., Bao A., Jamshed A., Yunus M., Jovid A., Latipa T. 2019. Comparison of multiresolution optical Landsat-8, Sentinel-2 and radar Sentinel-1 data for automatic lineament extraction: A case study of Alichur area, SE Pamir. Remote Sensing, 11, 778.
  • 27.Joshi A.K. 1989. Automatic detection of lineaments from Landsat data, in: 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,. IEEE, 85-88.
  • 28. Koçal A. 2004. A methodology for detection and evaluation of lineaments from satellite imagery (Master’s Thesis). Middle East Technical University.
  • 29. Koike K., Nagano S., Ohmi M. 1995. Lineament analysis of satellite images using a Segment Tracing Algorithm (STA). Computers & Geosciences, 21, 1091-1104.
  • 30. Lachaine G. 1999. Structures géologiques et linéaments, Beauce (Québec): apport de la télédétection. Université de Sherbrooke.
  • 31. Lu Y., Liu L., Xu G. 2016. Constraints of deep crustal structures on large deposits in the Cloncurry district, Australia: Evidence from spatial analysis. Ore Geology Reviews, 79, 316-331.
  • 32. Lund K., Tysdal R.G., Evans K.V., Kunk M.J., Pillers R.M. 2011. Structural controls and evolution of gold-, silver-, and REE-bearing copper-cobalt ore deposits, Blackbird district, east-central Idaho: Epigenetic origins. Economic Geology, 106, 585-618.
  • 33. Maged M., Mazlan H. 2010. Lineament mapping using multispectral remote sensing satellite data. International Journal of Physical Sciences, 5, 1501-1507.
  • 34. Manuel R., Brito M.D.G., Chichorro M., Rosa C. 2017. Remote sensing for mineral exploration in central Portugal. Minerals, 7, 184.
  • 35. Martinez J.-M., Guyot J.-L., Filizola N., Sondag F. 2009. Increase in suspended sediment discharge of the Amazon River assessed by monitoring network and satellite data. Catena, 79, 257-264.
  • 36. Masoud A., Koike K. 2017. Applicability of computer-aided comprehensive tool (LINDA: LINeament Detection and Analysis) and shaded digital elevation model for characterizing and interpreting morphotectonic features from lineaments. Computers & Geosciences, 106, 89-100.
  • 37. Masoud A., Koike K. 2006. Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt. Journal of African Earth Sciences, 45, 467-477.
  • 38. Masoud A.A., Koike K. 2011. Auto-detection and integration of tectonically significant lineaments from SRTM DEM and remotely-sensed geophysical data. ISPRS journal of Photogrammetry and Remote sensing, 66, 818-832.
  • 39. Mavrantza O., Argialas D.P. 2003. Implementation and evaluation of spatial filtering and edge detection techniques for lineament mapping: case study-Alevrada, Central Greece, in: Remote Sensing for Environmental Monitoring, GIS Applications, and Geology II. SPIE, 417-428.
  • 40. Moore G.K., Hastings D.A. 1986. Digital processing of Landsat tm images for lineament occurrence and spatial frequency in sedimentary rocks. Geological Survey, Sioux Falls, SD (USA).
  • 41. Negredo A.M., Replumaz A., Villaseñor A., Guillot S. 2007. Modeling the evolution of continental subduction processes in the Pamir–Hindu Kush region. Earth and Planetary Science Letters 259, 212-225. https://doi.org/10.1016/j.epsl.2007.04.043
  • 42. Nguimbous-Kouoh J.J., Minyem D., Ghogomu R.T., Simon Ngos I.I.I., Manguelle-Dicoum E. 2019. Watersheds Morphometry and Structural Interpretation of Lineaments Extracted from SRTM Data in the Mayo-Kani Division Far-Nord Region,(Cameroon). Journal of Geosciences, 7, 54-65.
  • 43. Paiva R.C., Durand M.T., Hossain F. 2015. Spatiotemporal interpolation of discharge across a river network by using synthetic SWOT satellite data. Water Resources Research, 51, 430-449.
  • 44. Pour A.B., Hashim M. 2014. Structural geology mapping using PALSAR data in the Bau gold mining district, Sarawak, Malaysia. Advances in Space Research, 54, 644-654.
  • 45. Rahnama M., Gloaguen R. 2014. TecLines: A MATLAB-based toolbox for tectonic lineament analysis from satellite images and DEMs, part 1: Line segment detection and extraction. Remote Sensing, 6, 5938-5958.
  • 46. Rajendran S., Nasir S. 2019. ASTER capability in mapping of mineral resources of arid region: A review on mapping of mineral resources of the Sultanate of Oman. Ore Geology Reviews, 108, 33-53.
  • 47.Ramli M.F., Yusof N., Yusoff M.K., Juahir H., Shafri H.Z.M. 2010. Lineament mapping and its application in landslide hazard assessment: a review. Bulletin of Engineering Geology and the Environment, 69, 215-233. https://doi.org/10.1007/s10064-009-0255-5
  • 48. Redouane M., Mhamdi H.S., Haissen F., Raji M., Sadki O. 2022. Lineaments Extraction and Analysis Using Landsat 8 (OLI/TIRS) in the Northeast of Morocco. Open Journal of Geology, 12, 333-357.
  • 49. Sarp G. 2005. Lineament analysis from satellite images, north-west of Ankara (Master’s Thesis). Middle East Technical University.
  • 50. Singh P.P., Garg R.D. 2013. Automatic road extraction from high resolution satellite image using adaptive global thresholding and morphological operations. Journal of the Indian Society of Remote Sensing, 41, 631-640.
  • 51. Soto-Pinto C., Arellano-Baeza A., Sánchez G. 2013. A new code for automatic detection and analysis of the lineament patterns for geophysical and geological purposes (ADALGEO). Computers & geosciences, 57, 93-103.
  • 52. Suzen M.L., Toprak V. 1998. Filtering of satellite images in geological lineament analyses: an application to a fault zone in Central Turkey. International journal of remote sensing, 19, 1101-1114.
  • 53. Takorabt M., Toubal A.C., Haddoum H., Zerrouk S. 2018. Determining the role of lineaments in underground hydrodynamics using Landsat 7 ETM+ data, case of the Chott El Gharbi Basin (western Algeria). Arabian Journal of Geosciences, 11, 1-19.
  • 54. Tyan C.-Y., Wang P.P. 1993. Image processing enhancement, filtering and edge detection using the fuzzy logic approach, in: [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems. IEEE, 600-605.
  • 55. Valero S., Chanussot J., Benediktsson J.A., Talbot H., Waske B. 2010. Advanced directional mathematical morphology for the detection of the road network in very high resolution remote sensing images. Pattern Recognition Letters, 31, 1120-1127.
  • 56. Wang D., Wan B., Qiu P., Su Y., Guo Q., Wang R., Sun F., Wu X. 2018. Evaluating the performance of Sentinel-2, Landsat 8 and Pléiades-1 in mapping mangrove extent and species. Remote Sensing, 10, 1468.
  • 57. Wang J. 1993. LINDA – a system for automated linear feature detection and analysis. Canadian Journal of Remote Sensing, 19, 009-021.
  • 58. Wang J., Howarth P.J. 1990. Use of the hough transform in automated lineament. IEEE transactions on geoscience and remote sensing, 28, 561-567.
  • 59. Zhang X., Pazner M., Duke N. 2007. Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). ISPRS Journal of Photogrammetry and Remote Sensing, 62, 271-282.
  • 60. Zlatopolsky A.A. 1992. Program LESSA (Lineament Extraction and Stripe Statistical Analysis) automated linear image features analysis – experimental results. Computers & Geosciences, 18, 1121-1126.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e6e55e3-bd79-46b6-a6a9-8bf0c72f5ebd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.