PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of the ageing-fatigue degradation on the mechanical properties of glass-reinforced composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Drawing up diagnostic relations between thermal characteristics determined in thermal imaging examinations and mechanical properties, allowing for forecasting the state of material during the use, was a purpose of the work. Research was performed on polyester – glass composites which were subjected to the ageing-fatigue degradation process in a device created specifically for that purpose. It was indicated how to assess the degree of the decline, taking into account the fall in material strength properties. The basis of a method was measurement of changes in temperature in activated thermal processes. Relations between changes of the speed of heating and cooling were related to the bending strength and the modulus of elasticity. Diagnoses were backed up with microscopic examinations.
Rocznik
Strony
113--119
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Silesian University Technology in Gliwice, Department of Theoretical and Applied Mechanics
autor
  • Silesian University Technology in Gliwice, Department of Theoretical and Applied Mechanics
autor
  • Silesian University Technology in Gliwice, Department of Theoretical and Applied Mechanics
Bibliografia
  • 1. Świderski, W. (2003). Lock-in thermography to rapid evaluation of destruction area in composite materials used in military applications. Proc. SPIE 5132, Sixth International Conference on Quality Control by Artifi cial Vision, 506. DOI: 10.1117/12.515159.
  • 2. Kaduna, A. & Gnatowski, A. (2012). Influence of heating rate on evolution of dynamic properties of polymeric laminates. Plast. Rubber Compos. 41(6), 233–239. dx.doi.org/10.1179/1743289811Y.0000000037.
  • 3. Avdelidis, N.P., Hawtin, B.C. & Almond, D.P. (2003). Transient thermography in the assessment of defects of aircraft composites. NDT and E Int. Vol. 36, 433–439. dx.doi.org/10.1016/S0963-8695(03)00052-5.
  • 4. Avdelidis, N.P., Ibarra-Castanedo, C., Maldague, X., Marioli-Riga, Z.P. & Almond, D.P. (2004). A thermographic comparison study for the assessment of composite patches. Infrared Phys. Technol. Vol. 45, 291–299. DOI: 10.1117/12.771082.
  • 5. Bates, D., Smith, G., Lu, D. & Hewitt, J. (2000). Rapid thermal non-destructive testing of aircraft components. Composites: Part B Vol. 31, 175–185. DOI: 10.1016/S1359-8368(00)00005-6 .
  • 6. Maldague, X.P.V. (2007). Non-destructive evaluation of materials by infrared thermography. London. United Kingdom. Springer-Verlag.
  • 7. Ruddock, R.W. (2013). Basic infrared thermography principles. USA: Reliabilityweb.com
  • 8. Vollmer, M. & Mollmann, K.P. (2010). Infrared Thermal imaging. Fundamentals, Research and Application. Weinheim, Germany: Wiley-VCH Verlag GmbH&Co.
  • 9. Rojek, M., Szymiczek, M. & Wróbel, G. (2011). Nondestructive methods of research on polymer materials. Plastic Process. 6(144), 507–510 (in Polish).
  • 10. Martin, R. (2008). Ageing of composites, Cambridge, England: Woodhead Publishing Limited.
  • 11. Bogdan-Włodek, A., Kozioł, M. & Myalski, J. (April, 2012). Influence of surface treatment on the wetting process of jute fibres with thermosetting polyester resin. Pol. J. Chem. Technol. 14(1), 21–27. DOI: 10.2478/v10026-012-0054-9.
  • 12. Landowski, M., Budzik, M. & Imielińska, K. (March, 2011). On degradation of glass/polyester laminate immersed in water. Adv. Mater. Sci. 11(1), 35–39. DOI: 10.2478/v10077-011-004-x.
  • 13. Harris, B. (2003). Fatigue in composites, Cambridge, England: Woodhead Publishing Limited.
  • 14. Rojek, M. (2011). Methodology of diagnostics research of layered composite materials with polymer warp. Gliwice, Poland: International OCSCO World Press (in Polish).
  • 15. Błażejewski, W. (2009). Methodology of selection of the structure of composite braid carriers with reference to containers made by the winding method. Tech. Trans. Mech. 1-M, 9–14. (in Polish).
  • 16. Cohen, D. (1997, July). Influence of filament winding parameters on composite vessel quality and strength. Comp.: Part A, 28A, 1035–1047. DOI: 10.1016/S1359-835X(97)00073-0.
  • 17. Szymiczek, M., Rojek, M. & Wróbel, G. (2011). Test of composite pipe in the aspect of diagnostic of aging – fatigue changes. Proc. Int. Sem. Sci. Educ. 16–23 April 2011 (61–63). Rome, Italy.
  • 18. Stabik, J., Szymiczek, M., Wróbel, G. & Rojek, M. (2012). New stand for composite pipes testing. Proceedings of X International Conference of the Quality. Reliability and Long Usage of Technical Systems and Technological Processes. 20–27 November 2012 (63–66). Eilat, Israel
  • 19. Standards Association of Poland. (2002). Poland standard: Advanced technical ceramics – Monolithic ceramics – Thermo-physical properties – Part 2: Determination of thermal diffusivity by the laser flash (or heat pulse) method. PN-EN 821-2:2002.
  • 20. N501 029 32/2474 – Non-destructive method of assessment concerning the degree of thermal and fatigue degradation of construction polymer composites.
  • 21. Standards Association of Poland. (1993). Poland standard: Plastics – Determination of flexural properties.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e6bd551-54fb-4c35-9bd2-8071468acc33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.