PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recent advances in the study of the initiation of energetic materials rusing characteristics of their thermal decomposition. Part I, Cyclic nitramines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Arrhenius parameters, Ea and log A, of 17 cyclic nitramines, derived from the Russian vacuum manometric method (SMM) and compatible thermoanalytical methods, have been used in this study. The detonation velocity, D, at maximum theoretical crystal density, of the nitramines in this study was taken as a characteristic of their detonation. On the basis of known relationships between their Ea and D2 values (modified Evans-Polanyi-Semenov equation), the specific influence of some physicochemical properties on their thermal decomposition was shown. A new logarithmic relationship was found between the rate constant k, of the unimolecular thermal decomposition of the nitramines studied at 230 °C, and their D values. A fundamental characteristic of this new relationship rests on the equivalency of the primary fission processes in the low-temperature thermal decomposition and on the detonation initiation of the nitramines under study. Both these relationships confirm the problems encountered in the kinetic specification of the thermal decomposition of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12hexaazaisowurtzitane (HNIW, CL-20) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX). These problems, and also the possible influence of the pre-decomposition states on the thermal decomposition of the nitramines studied, are discussed.
Rocznik
Strony
173--189
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
  • Institute of Energetic Materials (IEM), University of Pardubice, CZ-532 10 Pardubice, Czech Republic
autor
  • Institute of Energetic Materials (IEM), University of Pardubice, CZ-532 10 Pardubice, Czech Republic
autor
  • Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, CZ-120 06 Prague, Czech Republic
Bibliografia
  • [1] Zeman S., The Relationship between Differential Thermal Analysis Data and the Detonation Characteristics of Polynitroaromatic Compounds, Thermochim. Acta, 1980, 41, 199-212.
  • [2] Zeman S., Study of Chemical Micro-mechanism of the Energetic Materials Initiation by Means of Characteristics of Their Thermal Decomposition, The 34th NATAS Annual Conference (CD-Proceedings), Kentucky, August 7-9, 2006, 074.1.05.208/1-074.1.05.208/12.
  • [3] Zeman S., A Study of Chemical Micro-mechanisms of Initiation of Organic Polynitro Compounds, in: Theoretical and Computational Chemistry, vol. 13, Energetic Materials, (Politzer P., Murray J., Eds.), Part 2, Elsevier B. V., Amsterdam, 2003, pp. 25-52.
  • [4] Zeman S., Sensitivity of High Energy Compounds, in: High Energy Density Materials, Series: Structure & Bonding, 125, (Klapötke T.M., Ed.), Springer, New York, 2007, pp. 195-271.
  • [5] Zeman S., Study of the Initiation Reactivity of Energetic Materials. Chapter 8, in: Energetics Science and Technology in Central Europe, (Armstrong R.W., Short J.M., Kavetsky R.A., Anand D.K., Eds.), CECDS, University of Maryland, College Park, Maryland, 2012, pp. 131-167.
  • [6] Zeman S., Analysis and Prediction of the Arrhenius Parameters of Low-temperature Thermolysis of Nitramines by Means of the 15N NMR Spectroscopy, Thermochim. Acta, 1999, 333, 121-129.
  • [7] Zeman S., Modified Evans-Polanyi-Semenov Relationship in the Study of Chemical Micromechanism Governing Detonation Initiation of Individual Energetic Materials, Thermochim. Acta, 2002, 384, 137-154.
  • [8] Kamlet M.J., Jacobs S.J., Chemistry of Detonations. I. Simple Method for Calculating Detonation Properties of CHNO Explosives, J. Chem. Phys., 1968, 48, 23-35.
  • [9] Zeman S., Relationship between Detonation Characteristics and 15N NMR Chemical Shifts of Nitramines, J. Energ. Mater., 1999, 17, 305-330.
  • [10] Zeman S., Atalar T., A New View of Relationships of the N-N Bond Dissociation Energies of Cyclic Nitramines. Part III. Relationship with Detonation Velocity, J. Energ. Mater., 2009, 27(3), 217-229.
  • [11] Rothstein L.R., Petersen R., Prediction of High Explosive Detonation Velocities from Their Composition and Structure, Propellants Explos., 1979, 4, 56-60.
  • [12] Klasovitý D., Zeman S., Process for Preparing cis-1,3,4,6-Tetranitrooctahydroimidazo- [4,5-d]imidazole (Bicyclo-HMX, BCHMX), CZ Patent 302068, C07D 487/04, Univ. of Pardubice, 2010.
  • [13] Krupka M., Devices and Equipment for Testing of Energetic Materials, New Trends Res. Energ. Mater., Proc. Semin., 4th, Univ. Pardubice, April 2001, p. 222.
  • [14] Jalovy Z., Matyas R., Klasovity D., Zeman S., Contribution to the Synthesis of 4,10-Dinitro-2,6,8,12-tetraoxa-4,10-diazatetracyclo[5.5.0.0(5,9)0(3,11)]dodecane (TEX), Cent. Eur. J. Energ. Mater., 2010, 7(3), 189-196.
  • [15] Zeman S., Dimun M., 1,4-Dinitrotetrahydroimidazo[4,5-d]imidazole-2,5-(1H,3H)- dione by Nitration of Tetrahydroimidazo[4,5-d]imidazole-2,5-(1H,3H)-dione, CS Patent 214947 B, 1984.
  • [16] Bogdanova Yu.A., Gubin S.A., Korsoonskii B.L., Pepekin V.I., Detonation Characteristics of Powerful Insensitive Explosives, Combust., Explos., Shock Waves (Engl. Transl.), 2009, 45(6), 738-743.
  • [17] Elbeih A., Zeman S., Jungova M., Vavra P., Attractive Nitramines and Related PBXs, Propellants Explos. Pyrotech., 2013, 38(3), 379-385.
  • [18] Zeman S., Analysis and Prediction of the Arrhenius Parameters of Low-Temperature Thermolysis of Nitramines by Means of the 15N NMR Spectroscopy, Thermochim. Acta, 1999, 333, 121-129.
  • [19] Zeman S., Relationship between the Arrhenius Parameters of the Low-temperature Thermolysis and the 13C and 15N Chemical Shifts of Nitramines, Thermochim. Acta, 1992, 202, 191-200.
  • [20] Pavlov A.N., Fedotov A.A., Pavlova L.L., Gameraand Yu.V., Dubovitskii F.I., in: Chemical Physics of the Processes of Combustion and Explosion, (Novozhilov B.V., Ed.), Proc. 9th All Union Symp. Compust. Explos. (in Russian), Acad. Sci. USSR, Chenogolovka 1989, 103.
  • [21] Grice M.E., Habibollahzadeh D., Politzer P., Calculated Structure, Heat of Formation and Decomposition Energetics of 1,3-Dinitro-1,3-diazacyclobutane, J. Chem. Phys., 1994, 100, 4706-4707.
  • [22] Sućeska M., Rajic M., Zeman S., Jalovy Z., 1,3,3-Trinitroazetidine (TNAZ). Study of Thermal Behaviour. Part II, J. Energ. Mater., 2001, 19(2 & 3), 241-254.
  • [23] Sitonina G.V., Korsoonskii B.L., Pyatakov N.F., Shvayko V.G., Abdrakhmanov I.Sh., Dubovitskii F.I., Kinetics of Thermal Decomposition of N,N’-Dinitropiperazine and 1,3-Dinitro-1,3-diazacyclopentane (in Russian), Izv. Akad. Nauk SSSR, Ser. Khim., 1979, 311-317.
  • [24] Stepanov R.S., Kruglyakova L.A., Astakhov A.M., Thermal Decomposition of Some Quinary Cyclic Nitramines, Zh. Obsh. Khim., 2006, 76, 2061-2062
  • [25] Robertson A.J.B, Thermal Decomposition of Explosives. II. Cyclotrimethylene-trinitramine (Cyclonite) and Cyclotetramethylenetetranitramine, Trans. Faraday Soc., 1949, 45, 85-93.
  • [26] Janney J.L., Rogers R.N., Thermochemistry of Mixed Explosives, Proc. 7th Int. Conf. Thermal Anal., Part 2, Kingston, Canada, August 1982, p. 1426; US Govt. Report DE 820 12 149, 1982.
  • [27] Andreev K.K., Thermal Decomposition and Combustion of Explosives (in Russian), Izdat. Nauka, Moscow, 1966.
  • [28] Maksimov Yu.Ya., Thermal Decomposition of Hexogen and Octogen, Tr. Mosk. Khim.-Tekhnol. Inst. im. Mendeleeva, 1967, 53, 73-84.
  • [29] Stepanov R.S., Kruglyakova L.A., Astakhov A.M., Thermal Decomposition of Some Cyclic Nitramines, Zh. Obsh. Khim., 2006,76, 525-526.
  • [30] Stepanov R.S., Kruglyakova L.A., Astakhov A.M., Kinetics of Thermal Decomposition of Some Nitramines with Two Condensed Quinary Cycles, Zh. Obsh. Khim., 2006, 76, 2063-2063.
  • [31] Rogers R.N., Differential Scanning Calorimetric Determination of Kinetics Constants of Systems that Melt with Decomposition, Thermochim. Acta, 1972, 3, 437-447.
  • [32] Results of Goshgarian B.B. – cited in paper by Brill T.B., Karpowicz R.J., Solid Phase Transition Kinetics. The Role of Intermolecular Forces in the Condensed-phase Decomposition of Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, J. Phys. Chem., 1982, 86, 4260-4265.
  • [33] Hu R., Yang Z., Liang Y., The Determination of the Most Probable Mechanism Function and Three Kinetic Parameters of Exothermic Decomposition Reaction of Energetic Materials by a Single Non-isothermal DSC Curve, Thermochim. Acta, 1988, 123, 135-151.
  • [34] Stepanov R.S., Rogozin M.V., Kruglyakova L.A., Stepanova M.A., Kinetics Regularity of Thermal Decomposition of 4,10-Dinitro-2,6,8,12-tetraoxa-4,10- diazatetracyklo[5.5.0.0.5,9)3,1,1]dodecane, Kinet. Katal., 1999, 40, 58-60.
  • [35] Lűbbecke S., Bohn M.A., Pfeil A., Krause H., Thermal Behavior and Stability of HNIW (CL-20), 29th Int. Annu. Conf. ICT, Karlsruhe, 1998, p. 145/1.
  • [36] Östmark H., Bergman H., Sensitivity and Spectroscopic Properties of the β- and ε-polymorphs of HNIW, Proc. Int. Symp. Energet. Materials Technol., Am. Def. Prep. Assoc., Meeting # 680, Phoenix, Arizona, Sept. 1995, p. 76.
  • [37] Stepanov R.S., Kruglyakova L.A., Structure/Kinetics Relationships of Thermodestruction of Some Framework Nitramines, Russ. J. Gen. Chem., 2010, 80, 316-322.
  • [38] Korsounskii B.L., Nedelko V.V., Chukanov N.V., Larikova T.S., Volk F., Kinetics of Thermal Decomposition of Hexanitrohexaazaisowurtzitane, Russ. Chem. Bull., 2000, 49(5), 812-818.
  • [39] Nedelko V.V., Chukanov N.V., Raevskii A.V., Korsounskii B.L., Larikova T.S., Kolesova O.I., Comparative Investigation of Thermal Decomposition of Various Modifications of Hexanitrohexaazaisowurtzitane (CL-20), Propellants Explos. Pyrotech., 2000, 25, 255-259.
  • [40] Manelis G.B., Nazin G.M., Rubtsov Yu.I., Strunin A.A., Thermal Decomposition and Combustion of Explosives and Propellants, Taylor & Francis, New York, 2003.
  • [41] Klasovitý D., Zeman S., Růžicka A., Jungová M., Roháč M., Cis-1,3,4,6- Tetranitrooctahydroimidazo-[4,5-d]imidazole (BCHMX), Its Properties and Initiation Reactivity, J. Hazard. Mater., 2009, 164, 954-961.
  • [42] Burov Yu., Dubikhin V., Kovalchukova O., Features of Kinetics of Thermal Destruction of HMX, New Trends Res. Energ. Mater., Proc. Semin., 11th, Univ. of Pardubice, 2008, pp. 476-479.
  • [43] Yan Q.-L., Zeman S., Svoboda R., Elbeih A., Thermodynamic Properties, Decomposition Kinetics and Reaction Models of BCHMX and Its Formex Bonded Explosive, Thermochim. Acta, 2012, 547, 150-160.
  • [44] Chukanov N.V., Dubovitskii V.A., Zakharov V.V., Golovina N.I., Korsunskii B.L., Vozchikova S.A., Nedelko V.V., Larikova T.S., Raevskii A.V., Aldoshin S.M., Phase Transformations of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane: the Role Played by Water, Dislocations and Density, Russ. J. Phys. Chem. B, 2009, 3(3), 486-493.
  • [45] Zeman S., Some Predictions in the Field of the Physical Thermal Stability of Nitramines, Thermochim. Acta, 1997, 302, 11-16.
  • [46] Zeman S., Elbeih A., Yan Q.-L., Note on the Use of the Vacuum Stability Test in the Study of Initiation Reactivity of Attractive Cyclic Nitramines in Formex P1 Matrix, J. Thermal Anal. Calorim., 2013, 111(2), 1503-1506.
  • [47] Zeman S., Elbeih A., Yan Q.-L., Note on the Use of the Vacuum Stability Test in the Study of Initiation Reactivity of Attractive Cyclic Nitramines in the C4 Matrix, J. Thermal Anal. Calorim., 2013, 112(3), 1433-1437.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e67b478-bfd1-4d0e-990d-2962db8faf4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.