PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Chemical reaction as a method for the separation of biologically-derived carboxylic acids

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The biotechnological production of organic compounds using renewable carbon sources is an approach consistent with sustainable development and green technologies. The development of these processes requires refinement of both the upstream stage, including the selection of microorganisms and the use of waste raw materials, and the downstream stage. The fermentation broth contains not only the main product but also unreacted substrates and by-products. The paper presents computer simulations that analyse the possibility of using esterification for the separation of lactic acid from acetic acid. The standard distillation approach does not allow for a high degree of separation, but a distillation step is possible for esters of both acids. As a result, high-purity ethyl lactate is obtained and, by introducing a hydrolysis step, pure lactic acid. The issue was analysed using Chemcad software with the UNIFAC thermodynamic model.
Rocznik
Strony
art. no. e75
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 61-131, Poznan, Poland
Bibliografia
  • 1. Ahmad A., Banat F., Alsafar H., Hasan S.W., 2024. An overview of biodegradable poly (lactic acid) production from fermentative lactic acid for biomedical and bioplastic applications. Biomass Conv. Bioref., 14, 3057–3076. DOI: 10.1007/s13399-022-02581-3.
  • 2. Augustiniene E., Valanciene E., Matulis P., Syrpas M., Jonuskiene I., Malys N., 2021. Bioproduction of L- and D-lactic acids: advances and trends in microbial strain application and engineering. Crit. Rev. Biotechnol., 42, 342–360. DOI: 10.1080/07388551.2021.1940088.
  • 3. Bui L.H.D., Aoki K., Tanaka T., Aso Y., 2024. Reactive extraction for the separation of glyceric acid from aqueous solutions with 2-naphthaleneboronic acid and tri-octyl methyl ammonium chloride. Biotechnol. Bioprocess Eng., 29, 733–742. DOI: 10.1007/s12257-024-00110-9.
  • 4. Demmelmayer P., Foo J.W., Wiesler D., Rudelstorfer G., Kienberger M., 2024. Reactive liquid-liquid extraction of lactic acid from microfiltered sweet sorghum silage press juice in an agitated extraction column using a hydrophobic natural deep eutectic solvent as modifier. J. Cleaner Prod., 458, 142463. DOI: 10.1016/j.jclepro.2024.142463.
  • 5. González-Navarrete C., Sánchez-Ramírez E., Ramírez-Márquez C., Hernández S., Cossío-Vargas E., Segovia-Hernández J.G., 2022. Innovative reactive distillation process for the sustainable purification of lactic acid. Ind. Eng. Chem. Res., , 61, 621–637. DOI: 10.1021/acs.iecr.1c04050.
  • 6. Huang S., Xue Y., Yu B., Wang L., Zhou C., Ma Y., 2021. A review of the recent developments in the bioproduction of polylactic acid and its precursors optically pure lactic acids. Molecules, 26, 6446. DOI: 10.3390/molecules26216446.
  • 7. Huang Y., Wang Y., Shang N., Li P., 2023. Microbial fermentation processes of lactic acid: challenges, solutions, and future prospects. Foods, 12, 2311. DOI: 10.3390/foods12122311.
  • 8. Kienberger M., Weinzettl C., Leitner V., Egermeier M., Demmelmayer P., 2023. (Selective) Isolation of acetic acid and lactic acid from heterogeneous fermentation of xylose and glucose. Chem. Eng. J. Adv., 16, 100552. DOI: 10.1016/j.ceja.2023.100552.
  • 9. Lech M., Trusek A., 2019. Selection of batch process conditions for microbiological production of lactic acid using waste whey. Chem. Process Eng., 40, 67–76. DOI: 10.24425/cpe. 2019.126101.
  • 10. Lee H.D., Lee M.Y., Hwang Y.S., Cho Y.H., Kim H.W., Park H.B., 2017. Separation and purification of lactic acid from fermentation broth using membrane-integrated separation processes. Ind. Eng. Chem. Res., 56, 8301–8310. DOI: 10.1021/acs.iecr.7b02011.
  • 11. Li C., Gao M., Zhu W., Wang N., Ma X., Wu C., Wang Q., 2021a. Recent advances in the separation and purification of lactic acid from fermentation broth. Process Biochem., 104, 142–151. DOI: 10.1016/j.procbio.2021.03.011.
  • 12. Li Y., Bhagwat S.S., Cortés-Peña Y.R., Ki D., Rao C.V., Jin Y.-S., Guest J.S., 2021b. Sustainable lactic acid production from lignocellulosic biomass. ACS Sustainable Chem. Eng., 9, 1341–1351. DOI: 10.1021/acssuschemeng.0c08055.
  • 13. Liu T., Sun L., Zhang C., Liu Y., Li J., Du G., Lv X., Liu L., 2023. Combinatorial metabolic engineering and process optimization enables highly efficient production of L-lactic acid by acidtolerant Saccharomyces cerevisiae. Bioresour. Technol., 379, 129023. DOI: 10.1016/j.biortech.2023.129023.
  • 14. Mungma N., Kienberger M., Siebenhofer M., 2019. Reactive extraction of lactic acid, formic acid and acetic acid from aqueous solutions with tri-n-octylamine/1-octanol/nundecane. ChemEngineering, 3, 43. DOI: 10.3390/chemengineering3020043.
  • 15. Ojo A.O., de Smidt O., 2023. Lactic acid: a comprehensive review of production to purification. Processes, 11, 688. DOI:10.3390/pr11030688.
  • 16. Olszewska-Widdrat A., Xiros C., Wallenius A., Schneider R., Rios da Costa Pereira L.P., Venus J., 2023. Bioprocess optimization for lactic and succinic acid production from a pulp and paper industry side stream. Front. Bioeng. Biotechnol., 11, 1176043. DOI: 10.3389/fbioe.2023.1176043.
  • 17. Papadopoulou E., Cabrera González M., Reif D., Ahmed A., Tsapekos P., Angelidaki I., Harasek M., 2023. Separation of lactic acid from fermented residual resources using membranę technology. J. Environ. Chem. Eng., 11, 110881. DOI: 10.1016/j.jece.2023.110881.
  • 18. Rübenach L., Kruse N., Rose M., 2024. Separation of biobased carboxylic acids by aqueous phase nanofiltration. Chem. Ing. Tech., 96, 432–439. DOI: 10.1002/cite.202300194.
  • 19. Swetha T.A., Ananthi V., Bora A., Sengottuvelan N., Ponnuchamy K., Muthusamy G., Arun A., 2023. A review on biodegradable polylactic acid (PLA) production from fermentative food waste – Its applications and degradation. Int. J. Biol. Macromol., 234, 123703. DOI: 10.1016/j.ijbiomac.2023.123703.
  • 20. Tian X., Chen H., Liu H., Chen J., 2021. Recent advances in lactic acid production by lactic acid bacteria. Appl. Biochem. Biotechnol., 193, 4151–4171. DOI: 10.1007/s12010-021-03672-z.
  • 21. Vidal N., Ventura M., Martínez F., Melero J.A., 2024. Se- lective extraction of high-added value carboxylic acids from aqueous fermentative effluents with new hydrophobic eutectic solvents (HES). Sep. Purif. Technol., 346, 127540. DOI: 10.1016/j.seppur.2024.127540.
  • 22. Yin F.-W., Sun X.-L., Zheng W.-L., Yin L.-F., Luo X., Zhang Y.-Y., Wang Y.-F., Fu Y.-Q., 2023. Development of a strategy for L-lactic acid production by Rhizopus oryzae using Zizania latifolia waste and cane molasses as carbon sources. Molecules, 28, 6234. DOI: 10.3390/molecules28176234.
  • 23. Zhang Z., Tsapekos P., Alvarado-Morales M., Zhu X., Zerva A., Jacobsen C.S., Angelidaki I., 2022. Enhanced fermentative lactic acid production from source-sorted organic household waste: focusing on low-pH microbial adaptation and bio augmentation strategy. Sci. Total. Environ., 808, 152129. DOI: 10.1016/j.scitotenv.2021.152129.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e6268b6-ff63-44aa-b6d2-7d548f043fec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.