PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of the steam condensation flow via CFD methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of numerical simulations to predict the performance of different steam models have been presented. All of the considered models of steam condensation have been validated on the base of benchmark experiment employing expansion in nozzle and next on the low pressure part of the steam turbine stage. For numerical analysis three models have been finally used - the ideal steam model without condensation, equilibrium steam model and a nonequilibrium steam model. It was confirmed that only the inclusion of the nonequilibrium effects in the computations can lead to a proper prediction of the condensation phenomena in the test nozzle. However, the basic characteristics of the low-pressure turbine can be succesfully estimated using a simple ideal steam or the equilibrium condensation model.
Słowa kluczowe
Rocznik
Tom
Strony
111--124
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
  • The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Centre for Thermomechanics of Fluids, Energy Conversion Department, Fiszera 14, 80-231 Gdańsk, Poland
autor
  • The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Centre for Thermomechanics of Fluids, Energy Conversion Department, Fiszera 14, 80-231 Gdańsk, Poland
autor
  • The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Centre for Thermomechanics of Fluids, Energy Conversion Department, Fiszera 14, 80-231 Gdańsk, Poland
  • Conjoint Doctoral School at the Faculty of Mechanical Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Puzyrewski R.: Theoretical and experimental studies on formation and growth of water drops in LP steam turbines. Trans. IFFM, 42-44(1969), 289-303.
  • [2] Puzyrewski R., Krzeczkowski S.: Some results of investigations on water-filem break-up and motion of water drops in aerodynamic trail. Trans. IFFM, 29-31(1966), 21-44 (in Polish).
  • [3] Garmathy G.: Condensation in flowing steam. In: Two-Phase Steam Flow in Turbines and Separators. (M.J. Moore, C.H. Sieverding, Eds.). Hemisphere Pub., 1976, 127-189.
  • [4] Krzyżanowski J.: Erosion of the steam turbine blades. Maszyny Przepływowe, Vol. 6. Ossolineum, Wrocław 1991 (in Polish).
  • [5] Badur J., Bilicki Z.: Kwidziński R.: Operational volumetric viscosity in the process of momentum transport during water expansion and shock steam condensation. Bull. IFFM PAS 479/1428/1997 (in Polish).
  • [6] Schnerr H., Badur J.: Multiphase _ows and problems related to the condensation and cavitation processes. Rep. IFFM PAS 23/2002, 1_44, Gdańsk 2002.
  • [7] Stastny M., Sejna M., Jonas O.: Modeling of the flow with condensation and chemical impurities in steam turbine cascades. In: Proc. 2nd Europ. Conf. Turbomachinery, Antwerpen 1997, 23-29.
  • [8] Stastny M., Sejna M.: Numerical analysis of hetero-homogeneous condensation of the steam flowing in turbine cascade. IMechE 557(1999), 815-826.
  • [9] Bilicki Z., Badur J.: A thermodynamically consistent relaxation model for a turbulent, binary mixture undergoing phase transition. J. Non-Equilibrium Thermodyn. 28(2003), 145-172.
  • [10] Starzmann J., Casey M., Sieverding F.: Non-equilibrium condensation effects on the flow and the performance of a low pressure steam turbine. GT2010-22467, In: Proc. of the ASME Turbo Expo 2010: Power for Land, Sea and Air, Glasgow, 14-18 June, 2010.
  • [11] Gerber A.G., Sigg R., Volker L., Casey M.V., Surken N.: Predictions of nonequilibrium phase transtion in a model low-pressure steam turbine. IMechE A: J. Power Energy 221(2007), 825-835.
  • [12] Błażko E.: Modernization concept of low pressure part of turbines PWK-200, TK-200, 13K-215 installed in power stations with an open cooling water system. Rep. IFFM PAS 41/89, Gdańsk 1989 (in Polish).
  • [13] Wróblewski W., Dykas S., Gardzilewicz A., Kolovratnik M.: Numerical and experimental investigations of steam condensation in LP part of a large power turbine. Trans. ASME J. Fluids Eng. 131(2009), 041301, 1-11.
  • [14] Yang Y., Shen S.: Numerical simulation on non-equilibrium spontaneous condensation in supersonic steam flow. Int. Commun. Heat Mass Tran. 36(2009), 902-907.
  • [15] Karcz M., Zakrzewski W., Lemański M., Badur J.: Problems related to the modelling of spontaneous condensation in the low-pressure part of 200 MW steam turbine. In: Proc. of 10th Int. Conf. on Heat Power Plants, Exploitation - Modernization - Remonts, Słok/Bełchatów, 6-8 June, 2011 (in Polish).
  • [16] Badur J., Karcz M., Lema«ski M., Zakrzewski W., Jesionek K.: Remarks on steam condensation modelling related to steam turbine of large output. In: Proc. of microCAD, Int. Sci. Conf., Miskolc 2011.
  • [17] Vukalovich M.P.: Thermodynamic properties of water and steam, 6 Edn. MASHGIZ Pub., Moscow 1958 (in Russian).
  • [18] www.ansys.com
  • [19] Lidke M., Błażko E.: One dimensional flow code for turbine calculations. Rep. IFFM PAS 88/78, Gdańsk 1978.
  • [20] Marcinkowski S.: Experimental determination of the formation of condensation in the steam turbine of large output. Teploenergetika 1(1983), 69-71 (in Rusian).
  • [21] Perycz S.: Steam and gas turbine. Gda«sk University of Technology, Gdańsk 1988 (in Polish).
  • [22] Traupel W.: Thermische Turbomaschinen, 4th Edn. Berlin 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e5f4cc2-1519-4e97-a79c-370f7060fa2b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.