Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a model of a solid fuel boiler with the improvement of the locking mechanism to increase its efficiency, which in turn will increase the savings and ecological safety of such a boiler. The given calculation of the volume of dry gases, theoretical volume of nitrogen and the volume of water vapor, which makes it possible to determine the content of oxygen in the air and other elements in the fuel. Given a 3-D model of solid fuel boiler by means of FlowSimulation software. Based on the test results, the amount of combustion products leaving the chamber was shown. The research results show that, depending on the size of the boiler elements, there is no ventilation in the room where the boiler is located, and after an hour of operation, a long stay of a person may cause health problems. t has been shown that the excess air factor depends on the type of combustible fuel, the method of its combustion and the structure of the boiler combustion chamber. A construction of the closing mechanism of the combustion chamber of a solid fuel boiler is proposed. Based on experimental and computational research, a model of the boiler door handle was constructed, when automatic opening would be impossible. Such a design of the mechanism closing the combustion chamber of a solid fuel boiler allows to increase its efficiency as a result of the stability of the gas mixture composition and to reduce the risk of carbon monoxide falling into the room.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
34--41
Opis fizyczny
Bibliogr. 10 poz., rys., tab.
Twórcy
autor
- Department of Mechanical Engineering Technology, Faculty of Engineering, Transport and Architecture, Khmelnytsky National University, 11, Instytutska Str., Khmelnytsky, 29016, Ukraine
autor
- Department of Construction and Civil Security, Faculty of Engineering, Transport and Architecture, Khmelnytsky National University, 11, Instytutska Str., Khmelnytsky, 29016, Ukraine
- Department of Water Supply and Sewage Systems, The Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, Aleja Powstańców Warszawy 6, 35-959 Rzeszow, Poland
autor
- Department of Water Supply and Sewage Systems, The Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, Aleja Powstańców Warszawy 6, 35-959 Rzeszow, Poland
autor
- Department of Construction and Civil Security, Faculty of Engineering, Transport and Architecture, Khmelnytsky National University, 11, Instytutska Str., Khmelnytsky, 29016, Ukraine
autor
- Department of Mechanical Engineering Technology, Faculty of Engineering, Transport and Architecture, Khmelnytsky National University, 11, Instytutska Str., Khmelnytsky, 29016, Ukraine
autor
- Department of Mechanical Engineering Technology, Faculty of Engineering, Transport and Architecture, Khmelnytsky National University, 11, Instytutska Str., Khmelnytsky, 29016, Ukraine
Bibliografia
- 1. Adánez J., Abad A., Mendiara T., Gayán P., de Diego L.F., García-Labiano F. 2018. Chemical looping combustion of solid fuels. Progress in Energy and Combustion Science, 65, 6–66.
- 2. Guo X., Bai H., Zhang Z. 2020. Aerodynamic characteristics of a stoker furnace with staged combustion: comparison of cold modeling experiments and numerical simulations. ACS Omega, 27(5), 332–341.
- 3. Kalda G., Borkowska A. 2013. Możliwości wykorzystania energii biomasy w gospodarce polskiej, Journal of Civil Engineering, Environment and Architecture, 60(4), 57–69.
- 4. Kalda G., Wojciechowska D. 2015. Analiza zastosowania innowacyjnych technologii do oświetlania, ogrzewania i klimatyzacji w krajach Europy. Journal of Civil Engineering, Environment and Architecture, 62(1), 249–263.
- 5. Kalda G., Piegdoń I., Gaweł W. 2020. Analysis of the utilization of plastics in water and wastewater systems of Poland’s Podkarpackie Region, and method for their identification. Springer, Lecture Notes in Civil Engineering, proceedings of CEE 2019, Advances in Resource-saving Technologies and Materials in Civil and Environmental Engineering, 47, 127–134.
- 6. Paraschiv L.S., Serban A., Paraschiv S. 2020. Calculation of combustion air required for burning solid fuels (coal/biomass/solid waste) and analysis of flue gas composition. Energy Reports, 6, 36–45.
- 7. Pronobis M., Kalisz S., Majcher J., Wasylów J., Sołtys J. 2020. Możliwości zastosowania biomasy w ciepłownictwie ze szczególnym podkreśleniem biomasy AGRO jako paliwa zastępującego węgiel z uwzględnieniem aspektów ekonomicznych i technicznych. INSTAL, 3, 17–25. DOI: 10.36119/15.2020.3.2
- 8. Purgał P., Markowska J., Zając A. 2008. Nowy kocioł na pelet, INSTAL, 11, 27–30.
- 9. Rakopoulos D., Avagianos I., Almpanidis D., Nikolopoulos N., Grammelis P. 2017. Dynamic modeling of a utility once through pulve rized fuel steam generator. Journal of Energy Engineering, 143, 4.
- 10. Róg L. 2011. Optymalizacja doboru węgla kamiennego dla poprawy sprawności kotłów energetycznych, INSTAL, 5, 47–54.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e5e64f6-0d5a-4b94-a8ca-893acfcace86