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Abstract. In this paper we study a class of one-dimensional Dirichlet boundary value prob-
lems involving the Caputo fractional derivatives. The existence of infinitely many solutions
for this equations is obtained by exploiting a recent abstract result. Concrete examples of
applications are presented.
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1. INTRODUCTION

The aim of this short note is to study nonlinear fractional boundary value problems
whose general form is given by

{
∆F,αu(t) + f(t, u(t)) = 0 a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

where

∆F,αu(t) :=
d

dt

(
0D

α−1
t (c0D

α
t u(t))− tD

α−1
T (ctD

α
Tu(t))

)
,

α ∈ (1/2, 1], 0D
α−1
t and tD

α−1
T are the left and right Riemann-Liouville fractional

integrals of order 1 − α respectively, c0Dα
t and c

tD
α
T are the left and right Caputo

fractional derivatives of order α respectively, and f : [0, T ] × R → R is a continuous
function.
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Following [12], denote by C∞0 ([0, T ],R) the set of all functions g ∈ C∞([0, T ],R)
with g(0) = g(T ) = 0. The fractional derivative Hilbert space Eα0 is defined by the
closure of C∞0 ([0, T ],R) with respect to the norm

‖u‖ :=

( T∫

0

|c0Dα
t u(t)|2dt+

T∫

0

|u(t)|2dt
)1/2

for every u ∈ Eα0 .
For basic facts and usual notation on the variational setting adopted here we refer

the reader to [12,18]. Let us denote

κ :=
Tα−

1
2

Γ(α)
√

2α− 1
,

C(T, α) :=

T/4∫

0

t2−2α dt+

3T/4∫

T/4

[
t1−α −

(
t− T

4

)1−α]2
dt

+

T∫

3T/4

[
t1−α −

(
t− T

4

)1−α
−
(
t− 3T

4

)1−α]2
dt,

and

B0 := lim sup
ξ→0+

3T/4∫

T/4

F (t, ξ) dt

ξ2
,

where F is the potential of f defined by

F (t, ξ) :=

ξ∫

0

f(t, x) dx, (t, ξ) ∈ [0, T ]× R.

With the above notation, in [2, Theorem 3.2], exploiting a quoted critical point the-
orem established by Ricceri in [17], the following result has been shown.

Theorem 1.1. Let f : [0, T ]× R→ R be a continuous function such that

(f1) F (t, ξ) ≥ 0 for every (t, ξ) ∈ ([0, T4 ] ∪ [ 3T4 , T ])× R.
Assume that there exist two real sequences {cn} and {dn} in [0,+∞), with
limn→∞ dn = 0, satisfying the conditions:

(h3) for some n0 ∈ N one has

cn <
T | cos(πα)|Γ(2− α)

4κ
√
C(T, α)

dn

for each n ≥ n0,
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(h4) A0 := lim
n→∞

ϕ(cn, dn, α, T ) <
B0

16κ2C(T, α)
, where

ϕ(cn, dn, α, T ) :=

∫ T
0

max|ξ|≤dn F (t, ξ)dt−
∫ 3T/4

T/4
F (t, cn) dt

T 2| cos(πα)|2Γ2(2− α)d2n − 16κ2c2nC(T, α)
.

Then, for each

λ ∈
(

16C(T, α)

T 2Γ2(2− α)| cos(πα)|B0
,

1

κ2T 2Γ2(2− α)| cos(πα)|A0

)
,

problem {
∆F,αu(t) + λf(t, u(t)) = 0 a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

admits a sequence of non-zero solutions which strongly converges to zero in Eα0 .

The aim of this paper is to prove the following remarkable consequence of Theo-
rem 1.1.

Theorem 1.2. Let f : R → R be a continuous function such that f |(−∞,0] ≡ 0 and
infξ≥0 F (ξ) = 0. Further, let h ∈ C0([0, T ]) with

(a0) min
t∈[0,T ]

h(t) > 0.

Suppose that there exist two sequences {cn} and {dn} in (0,+∞), with cn < dn for
every n ≥ ν, and lim

n→∞
dn = 0, such that:

(a1) lim
n→∞

dn
cn

= +∞,

(a2) max
x∈[cn,dn]

f(x) ≤ 0 for every n ≥ ν,

(a3)
16C(T, α)

T 2Γ2(2− α)| cos(πα)|

3T
4∫

T
4

h(t) dt

< lim sup
ξ→0+

F (ξ)

ξ2
< +∞.

Then, the following problem
{

∆F,αu(t) + h(t)f(u(t)) = 0 a.e. t ∈ [0, T ],

u(0) = u(T ) = 0

admits a sequence of non-zero solutions which strongly converges to zero in Eα0 .

For several results on fractional differential equations, one can see, for example,
the monographs of Miller and Ross [15], Samko et al. [18], Podlubny [16], Hilfer [11],
Kilbas et al. [13] and the papers [1, 3–7]

We cite a recent monograph by Kristály, Rădulescu and Varga [14] as a general
reference on variational methods adopted here.
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2. PROOF OF THE MAIN RESULT

Our aim is to apply Theorem 1.1. First of all observe that, by (a0), condition (f1)
holds. Further, if {cn} and {dn} are two real sequences satisfying our assumptions,
we have that there exists n0 ≥ ν such that

c2n
d2n

<
T | cos(πα)|Γ(2− α)

4κ
√
C(T, α)

,

for every n ≥ n0. Hence the hypothesis (h3) in Theorem 1.1 is verified. We will prove
that

A0 := lim
n→∞

‖h‖L1([0,T ]) max
|ξ|≤dn

F (ξ)−




3T
4∫

T
4

h(t) dt


F (cn) dt

T 2| cos(πα)|2Γ2(2− α)d2n − 16κ2c2nC(T, α)
= 0.

Set

hn := ‖h‖L1([0,T ])

max
|ξ|≤dn

F (ξ)

c2n
−




3T
4∫

T
4

h(t) dt


 F (cn)

c2n

for every n ≥ n0 and observe that hypothesis (a2) yields

max
|ξ|≤dn

F (ξ) = max
|ξ|≤cn

F (ξ). (2.1)

Thus, since
3T
4∫

T
4

h(t) dt

‖h‖L1([0,T ])
≤ 1 and F (cn) ≥ 0,

by (2.1), we can write

max
|ξ|≤dn

F (ξ)

c2n
=

max
|ξ|≤cn

F (ξ)

c2n
≥ F (cn)

c2n
≥

3T
4∫

T
4

h(t) dt

‖h‖L1([0,T ])

F (cn)

c2n
.

for every n ≥ n0.
Since hn ≥ 0 for every n ≥ n0, one easily gets

0 ≤ lim sup
n→∞

hn.

Further, by (a3) we have

0 < lim sup
ξ→0+

F (ξ)

ξ2
< +∞, (2.2)
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and consequently (note that cn ↘ 0+ as n→∞) we obtain

0 ≤ lim sup
n→∞

F (cn)

c2n
< +∞. (2.3)

Now, let ξn ∈ (0, cn] be a sequence such that F (ξn) := max
|ξ|≤cn

F (ξ) for every n ≥ n0.
Thus

lim sup
n→∞

max
|ξ|≤dn

F (ξ)

c2n
= lim sup

n→∞

max
|ξ|≤cn

F (ξ)

c2n
= lim sup

n→∞

F (ξn)

c2n
≤ lim sup

n→∞

F (ξn)

ξ2n
.

The above inequalities and (2.2) yield

0 ≤ lim sup
n→∞

max
|ξ|≤dn

F (ξ)

c2n
≤ lim sup

n→∞

F (ξn)

ξ2n
< +∞.

Hence, there exists a constant β such that

0 ≤ lim sup
n→∞

hn = β. (2.4)

Then, by (a1) and (2.4), one has

A0 = lim sup
n→∞

hn(
T 2| cos(πα)|2Γ2(2− α)

d2n
c2n
− 16κ2C(T, α)

) = 0.

Concluding, hypothesis (h4) holds. Finally, bearing in mind condition (a3), one has

1 ∈
(

16C(T, α)

T 2Γ2(2− α)| cos(πα)|B0
,+∞

)
.

Thanks to Theorem 1.1, the thesis is achieved. The next result is a direct consequence
of Theorem 1.2.

Proposition 2.1. Let h ∈ C0([0, T ]) satisfying condition (a0). Also let {cn} and
{dn} be two sequences in (0,+∞) such that dn+1 < cn < dn for every n ≥ ν,
limn→∞ dn = 0, and limn→∞

dn
cn

= +∞. Moreover, let ϕ ∈ C1([0, 1]) be a nonnegative
function such that ϕ(0) = ϕ(1) = ϕ′(0) = ϕ′(1) = 0 and

max
s∈[0,1]

ϕ(s) >
16C(T, α)

T 2Γ2(2− α)| cos(πα)|

3T
4∫

T
4

h(t) dt

.

Further, let g : R→ R be the function defined by

g(t) :=




ϕ
( t− dn+1

cn − dn+1

)
if t ∈ ⋃n≥ν [dn+1, cn],

0 otherwise.
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Then, problem
{

∆F,αu(t) + h(t)y(u(t)) = 0 a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

where
y(u(t)) := |u(t)|(2g(u(t)) + ug′(u(t))),

admits a sequence of non-zero solutions which strongly converge to zero in Eα0 .

Proof. Let {cn} and {dn} be two positive sequences satisfying our assumptions. We
claim that all the hypotheses of Theorem 1.2 are verified. Indeed, one has

F (ξ) :=

ξ∫

0

y(t)dt = ξ2g(ξ) for all ξ ∈ R+.

Moreover, direct computations ensure that

max
x∈[cn+1,dn+1]

y(x) = 0

for every n ≥ ν, and

lim sup
ξ→0+

F (ξ)

ξ2
= max
s∈[0,1]

ϕ(s) >
16C(T, α)

T 2Γ2(2− α)| cos(πα)|

3T
4∫

T
4

h(t) dt

.

The assertion follows by Theorem 1.2.

In conclusion we present a concrete example of the application of Proposition 2.1.

Example 2.2. Let h ∈ C0([0, T ]) satisfying condition (a0). Take the positive real
sequences

an :=
1

n!n
and bn :=

1

n!

for every n ≥ 2. Now, define ϕ ∈ C1([0, 1]) as follows

ϕ(s) := ζe

1

s(s− 1)
+ 4

(for all s ∈ [0, 1]),

and set

ĝ(t) :=




ϕ
( t− 1/(n+ 1)!

1/(n!n)− 1/(n+ 1)!

)
if t ∈ A,

0 otherwise,

where
A :=

⋃

n≥2

[ 1

(n+ 1)!
,

1

(n!n)

]
.
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If
ζ >

16C(T, α)

T 2Γ2(2− α)| cos(πα)|

3T
4∫

T
4

h(t) dt

,

then problem {
∆F,αu(t) + h(t)y(u(t)) = 0 a.e. t ∈ [0, T ],
u(0) = u(T ) = 0,

where
y(u(t)) := |u(t)|(2ĝ(u(t)) + uĝ′(u(t))),

admits a sequence of non-zero solutions which strongly converges to zero in Eα0 .

We just mention, for completeness, that related variational arguments have been
used recently in [8] proving the existence of at least one non-zero solution for one
dimensional fractional equations. See also [9, 10] for related topics.
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