PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cellular automaton modeling of ductile iron density changes at the solidification time

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Formation of the shrinkage defects in ductile iron castings is far more complicated phenomenon than in other casting alloys. In the paper one of the aspects of formation of porosity in this alloy was considered – changes in cast iron's density during crystallization caused by varying temperature, phase fractions and phase's composition. Computer model, using cellular automata method, for determination of changes in density of ductile iron during crystallization was applied. Simulation of solidification was conducted for 5 Fe-C binarie alloys with ES from 0.9 to 1.1 for the estimation of the eutectic saturation influence on the ductile iron shrinkage and expansion. As a result of calculations it was stated that after undercooling ductile iron below liquidus temperature volumetric changes proceed in three stages: preeutectic shrinkage (minimal in eutectic cast iron), eutectic expansion (maximum value equals to about 1.5% for ES = 1.05) and last shrinkage (about 0.4% in all alloys regardless of ES).
Rocznik
Strony
9--14
Opis fizyczny
Bibliogr. 22 poz., rys., wykr.
Twórcy
  • Faculty of Foundry Engineering, AGH University of Science and Technology, Reymonta Str. 23, 30-059 Krakow, Poland
autor
  • Faculty of Foundry Engineering, AGH University of Science and Technology, Reymonta Str. 23, 30-059 Krakow, Poland
  • Faculty of Foundry Engineering, AGH University of Science and Technology, Reymonta Str. 23, 30-059 Krakow, Poland; Odlewnie Polskie S.A., Wyzwolenia Ave. 70, 27-200 Starachowice, Poland
autor
  • Faculty of Foundry Engineering, AGH University of Science and Technology, Reymonta Str. 23, 30-059 Krakow, Poland
Bibliografia
  • [1] The Sorelmetal Book of Ductile Iron. (2004). Rio Tinto iron & titanium.
  • [2] Nandori, G. (1996). Relation between the volume change during the solidification of lamellar and ductile cast iron and the crystallization sequence. Materials Science Forum. 215-216, 399-407.
  • [3] Gedeonova, Z. (1996). Displacement of the Surface Mould and Metal during the Solidification of Nodular Graphiet Iron Casting. Materials Science Forum. 215-216, 391-398.
  • [4] Ohnaka, I., Sato, A., Sugiyama, A. & Kinoshita, F. (2008). Mechanism and estimation of porosity defects in ductile cast iron. International Journal of Cast Metals Research. 21(1-4), 11-16.
  • [5] Fredriksson, H., Stjerndahl, J. & Tinoco, J. (2005). On the solidification of nodular cast iron and its relation to the expansion and contraction. Materials Science and Engineering A. 413-414, 363-372.
  • [6] Burbelko, A., Fraś, E., Gurgul, D., Kapturkiewicz, W. & Sikora, J. (2011). Simulation of the ductile iron solidification using a cellular automaton. Key Engineering Materials. 457, 330-336.
  • [7] Umantsev, A.R., Vinogradov, V.V. & Borisov, V.T. (1985). Mathematical modeling of the dendrite growth during the solidification from undercooled melt. Kristallografia. 30, 455-460.
  • [8] Rappaz, M. & Gandin, Ch.A. (1993). Probabilistic Modelling of Microstructure Formation in Solidification Processes. Acta Metallurgica et Materialia. 41, 345-360.
  • [9] Pan, S. & Zhu, M. (2010). A three-dimensional sharp interface model for the quantitative simulation of solutal dendritic growth. Acta Materialia. 58. 340-352.
  • [10] Guillemot, G., Gandin, Ch.A. & Bellet, M. (2007). Interaction between single grain solidification and macrosegregation: Application of a cellular automaton-finite element model. Journal of Crystal Growth. 303. 58-68.
  • [11] Beltran-Sanchez, L. & Stefanescu, D.M. (2004). A quantitative dendrite growth model and analysis of stability concepts. Metall. Mat. Trans. A. 35, 2471-2485.
  • [12] Pavlyk, V. & Dilthey, U. (2004). Simulation of weld solidification microstructure and its coupling to the macroscopic heat and fluid flow modelling. Modelling and Simulation in Materials Science and Engineering. 12, 33-45.
  • [13] Zhu, M.F. & Hong, C.P. (2002). A three dimensional modified cellular automaton model for the prediction of solidification microstructures. ISIJ International. 42, 520-526.
  • [14] Jarvis, D.J., Brown, S.G.R. & Spittle J.A. (2000). Modelling of non-equilibrium solidification in ternary alloys: comparison of 1D, 2D, and 3D cellular automaton-finite difference simulations. Mat. Sci. Techn. 16, 1420-1424.
  • [15] Burbelko, A.A., Fraś, E., Kapturkiewicz, W. & Gurgul, D. (2010). Modelling of dendritic growth during unidirectional solidification by the method of cellular automata. Mat. Sci. Forum. 649, 217-222.
  • [16] Burbelko, A.A., Fraś, E., Kapturkiewicz, W. & Olejnik, E. (2006). Nonequilibrium kinetics of phase boundary movement in cellular automaton modelling. Mat. Sci. Forum. 508, 405-410.
  • [17] Zhu, M., Pan, S., Sun, D. & Zhao, H. (2010). Numerical Simulation of Microstructure Evolution During Alloy Solidification by Using Cellular Automaton Method. SIJ International. 50(12), 1851-1858.
  • [18] Zhao, H.L., Zhu, M.F. & Stefanescu, D.M. (2011). Modeling of the divorced eutectic solidification of spheroidal graphite cast iron. Key Eng. Materials. 457, 324-329.
  • [19] Kapturkiewicz, W., Burbelko, A.A., Fraś, E., Górny, M. & Gurgul, D. (2010). Computer modelling of ductile iron solidification using FDM and CA methods. Journal of Achievements in Materials and Manufacturing Engineering. 43, 310-323.
  • [20] Burbelko, A.A., Gurgul, D., Kapturkiewicz, W. et al. Cellular automaton modelling of ductile iron microstructure in the thin wall casting, IOP Conference Series-Materials Science and Engineering, 33, Art. Nr: 012083.
  • [21] Gurgul, D., Burbelko, A.A., Fraś, E. & Guzik E. (2010). Multiphysics and multiscale modelling of ductile cast iron solidification. Archives of Foundry Engineering. 10, 35-40.
  • [22] Gurgul D. & Burbelko A. (2010). Simulation of Austenite and Graphite Growth in Ductile Iron by means of Cellular Automata. Archives of Metallurgy and Materials. 55, 53-60.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e52280a-e22b-4c42-ae04-33fbe1fefcba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.