PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of stick electrode coating’s moisture content on the diffusible hydrogen in underwater wet shielded metal arc welding

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In shielded metal arc welding, the major factors influencing hydrogen uptake into the weld metal are (i) the hydrogen content of the base metal, (ii) hydrogen input by the welding consumable, and (iii) the hydrogen introduced by the atmosphere surrounding the arc process. In this study, the relative contribution of these factors is investigated and compared to each other for the case of underwater wet shielded metal arc welding. To assess the influence of the stick electrode’s moisture (capillary introduced water during handling operations) on the diffusible hydrogen in wet welded samples, wet and dry electrodes were welded at four different water depths. The moisture was absorbed through the sharpened electrode tip only, to ensure close to service conditions. The results show that the moist stick electrode coatings lead to 22.6% higher average diffusible hydrogen content in the weld metal (0.5 m water depth an average). However, the effect disappears with increasing water depths (no difference in 60 m water depth).
Rocznik
Strony
27--37
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Leibniz Universität Hannover, Institut für Werkstoffkunde (Materials Science), An der Universität 2, 30823 Garbsen, Germany
autor
  • Leibniz Universität Hannover, Institut für Werkstoffkunde (Materials Science), An der Universität 2, 30823 Garbsen, Germany
Bibliografia
  • 1. Fydrych, D., Łabanowski, J., Tomków, J., Rogalski, G. (2015). Cold cracking of underwater wet welded S355G10+N high strength steel. Adv. Mater. Sci. 15 (3), 48-56. https://doi.org/10.1515/adms-2015-0015
  • 2. Świerczyńska, A., Fydrych, D., Rogalski, G. (2017). Diffusible hydrogen management in underwater wet self-shielded flux cored arc welding. Int. J. Hydrogen Energy 42 (38), 24532-24540. https://doi.org/10.1016/j.ijhydene.2017.07.225
  • 3. Tomków, J., Łabanowski, J., Fydrych, D., Rogalski, G. (2018). Cold cracking of S460N steel in water environment. Pol. Marit. Res. 25 (3), 131-136. https://doi.org/10.2478/pomr-2018-0104
  • 4. Klett, J., Hecht-Linowitzki, V., Grünzel, O., Schmidt, E., Maier, H.J., Hassel, T. (2020). Effect of the water depth on the hydrogen content in SMAW wet welded joints. SN Appl. Sci. 2, 1269. https://doi.org/10.1007/s42452-020-3066-8
  • 5. Tomków, J., Rogalski, G., Fydrych, D., Łabanowski, J. (2018). Improvement of S355G10+N steel weldability in water environment by Temper Bead Welding. J. Mater. Process. Technol., 262, 372–381. https://doi.org/10.1016/j.jmatprotec.2018.06.034
  • 6. Menezes, P.H.R., Pessoa, E.C.P., Bracarense, A.Q. (2019). Comparison of underwater wet welding performed with silicate and polymer agglomerated electrodes. J. Mater. Process. Technol., 266, 63–72. https://doi.org/10.1016/j.jmatprotec.2018.10.019
  • 7. Santos, V.R., Monteiro, M.J., Rizzo, F.C., Bracarense, A.Q., Pessoa, E.C.P., Marinho, R.R., Vieira, L.A. (2012). Development of an oxyrutile electrode for wet welding. Weld. J., 12, 319–328.
  • 8. Klett, J., Mattos, I.B.F., Maier, H.J., e Silva, R.H.G., Hassel, T. (2020). Control of the diffusible hydrogen content in different steel phases through the targeted use of different welding consumables in underwater wet welding. Mater. Corr. 1–13. https://doi.org/10.1002/maco.202011963
  • 9. Klett, J., Hassel, T. (2020). Reducing the risk of hydrogen-induced cold cracks in hyperbaric wet welding of highstrength steels by using austenitic welding consumables. Weld. Cut. 19 (1), 54–60.
  • 10. Rowe, M., Liu, S. (2001). Recent developments in underwater wet welding. Sci. Technol. Weld Joi. 6 (6), 387–396. https://doi.org/10.1179/stw.2001.6.6.387
  • 11. Li, H., Liu, D., Song, Y., Yan, Y., Guo, N., Feng, J. (2017). Microstructure and mechanical properties of underwater wet welded high-carbon-equivalent steel Q460 using austenitic consumables. J. Mater. Process. Technol. 249 (Supplement C), 149-157. https://doi.org/10.1016/j.jmatprotec.2017.06.009
  • 12. Tomków, J., Fydrych, D., Rogalski, G. (2019). Role of Bead Sequence in Underwater Welding. Materials 12, 3372. https://doi.org/10.3390/ma12203372
  • 13. Tomków, J., Rogalski, G., Fydrych, D., Łabanowski, J. (2019). Advantages of the Application of the Temper Bead Welding Technique During Wet Welding. Materials 12, 915. https://doi.org/10.3390/ma12060915
  • 14. Fydrych, D., Świerczyńska, A., Rogalski, G., Łabanowski, J. (2016). Temper Bead Welding of S420G2+M Steel in Water Environment, Adv. Mater. Sci. 16 (4), 5-16. https://doi.org/10.1515/adms-2016-0018
  • 15. Tomków, J., Fydrych, D., Rogalski, G., Łabanowski, J. (2018). Temper Bead Welding of S460N Steel in Wet Welding Conditions. Adv. Mater. Sci. 18 (3), 48-56. https://doi.org/10.1515/adms-2017-0036
  • 16. Reisgen, U., Olschok, S., Lenz, K. (2018). Induktive Wärmenachbehandlung nass unterwassergeschweißter hochfester Feinkornbaustähle. Schweißen Schneiden, 70 (6), 396-403.
  • 17. Brätz, O., Henkel, K.-M., Klett, J., Hassel, T. (2018). Anwendung der Induktion für schweißtechnische Erwärmung beim nassen Lichtbogenhandschweißen unter Wasser. Kolloquium Induktionserwärmung in der schweißtechnischen Fertigung, 2, 29–35.
  • 18. Zhang, H.T., Dai, X.Y., Feng, J.C., Hu, L.L. (2015). Preliminary investigation on real-time induction heating-assisted underwater wet welding. Weld. J. 94 (1), 8-15.
  • 19. Sun, Q.J., Cheng, W.Q., Liu, Y.B., Wang, J.F., Cai, C.W., Feng, J.C. (2016). Microstructure and mechanical properties of ultrasonic assisted underwater wet welding joints. Mater. Des. 103, 63-70. https://doi.org/10.1016/j.matdes.2016.04.019
  • 20. Chen, H., Guo, N., Liu, C., Zhang, X., Xu, C., Wang, G. (2020). Insight into hydrostatic pressure effects on diffusible hydrogen content in wet welding joints using in-situ X-ray imaging method. Int. J. Hydrogen Energy 45, 10219-10226. https://doi.org/10.1016/j.ijhydene.2020.01.195
  • 21. Chen, H., Guo, N., Xu, K., Xu, C., Zhou, L., Wang, G. (2020). In-situ observations of melt degassing and hydrogen removal enhanced by ultrasonics in underwater wet welding. Mater. Des. 188, 108482. https://doi.org/10.1016/j.matdes.2020.108482
  • 22. Li, H., North, T.H. (1992). Hydrogen Absorption and Hydrogen Cracking in High Strength Weld Metal. Key. Eng. Mater. 69–70, 95–112. https://doi.org/10.4028/www.scientific.net/KEM.69-7
  • 23. Kiefer, J.H. (1996). Effects of Moisture Contamination and Welding Parameters on Diffusible Hydrogen. Weld. J. 75 (5), 155-161.
  • 24. Mutnansky, V. (1983). Shielded gas welding of high-strength martensitic steel. Zvaranie 32 (9), 269-273.
  • 25. Kussike, S.M. (2015). Hydrophobierung von Stabelektroden für das “nasse” Lichtbogenhandschweißen unter Wasser. Ph.D. Thesis, Leibniz Universität Hannover, Germany.
  • 26. Deutscher Verband für Schweißtechnik. (2017). DVS Merkblatt 1818: Ausführung von Lichtbogenschweißarbeiten in nasser Umgebung.
  • 27. Tomków, J., Fydrych, D., Rogalski, G., Łabanowski, J. (2019). Effect of the welding environment and storage time of electrodes on the diffusible hydrogen content in deposited metal. Rev. de Metal. 55 (1), e140. https://doi.org/10.3989/revmetalm.140
  • 28. Mielnicka, K., Wolski, A., Świerczyńska, A., Rogalski, G., Fydrych, D. (2019). Determination of moisture resistance of covered electrodes according to PN-EN ISO 14372. Weld. Tech. Rev. vol. 91 (7), 23-30. https://doi.org/10.26628/wtr.v91i7.1049
  • 29. Tomków, J., Fydrych, D., Wilk, K. (2020). Effect of Electrode Waterproof Coating on Quality of Underwater Wet Welded Joints. Mater. 13 (13), 2947. https://doi.org/10.3390/ma13132947
  • 30. Hecht-Linowitzki, V., Klett, J., Hassel, T. (2016). Automated Underwater Arc Welding. Proceedings of the Symposium on Automated Systems and Technologies, 10/16, 21–26.
  • 31. ISO - International Organization for Standardization. (2018). ISO 3690:2018-07: Welding and Allied Processes - Determination of Hydrogen Content in Arc Weld Metal.
  • 32. Klett, J., Wolf, T., Maier, H.J., Hassel, T. (2020). The Applicability of the Standard DIN EN ISO 3690 for the Analysis of Diffusible Hydrogen Content in Underwater Wet Welding. Materials 13 (17), 3750. https://doi.org/10.3390/ma13173750
  • 33. Ando, S., Asahina, T. (1983). A Study on the Metallurgical Properties of Steel Welds with Underwater Gravity Welding. In Underwater Welding, Proceedings of the International Conference. 255–261.
  • 34. Da Silva, W.C.D., Ribeiro, L.F., Bracarense, A.Q., Pessoa, E.C.P. (2012). Effect of the Hydrostatic Pressure in the Diffusible Hydrogen at the Underwater Wet Welding. Proceedings of the ASME 31st International Conference OMAE2012-83002 No. 44939, 1–8.
  • 35. Kong, X., Li, C., Zou, Y., Zhang, J., Hu, Y., Wang, J., Qaddoumi, N., Koh, S.-K., Devlin, J. (2016). Measurement and Analysis of the Diffusible Hydrogen in Underwater Wet Welding Joint. MATEC Web Conf., 39, 03004. https://doi.org/10.1051/matecconf/20163903004
  • 36. Moreno-Uribe, A.M., Bracarense, A.Q., Pessoa, E.C.P. (2020). The Effect of Polarity and Hydrostatic Pressure on Operational Characteristics of Rutile Electrode in Underwater Welding. Materials 13, 5001. https://doi.org/10.3390/ma13215001
  • 37. Parshin, S.G., Levchenko, A.M., Maystro, A.S. (2020). Metallurgical Model of Diffusible Hydrogen and Non-Metallic Slag Inclusions in Underwater Wet Welding of High-Strength Steel. Metals 10, 1498. https://doi.org/10.3390/met10111498
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e50fbc0-0ddf-43c3-8f25-4933cd8a9206
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.