PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Qualifying the TIG orbital welding technology of titanium pipes with a perforated bottom

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Kwalifikowanie technologii spawania orbitalnego TIG rur tytanowych z dnem sitowym
Języki publikacji
EN
Abstrakty
EN
The article presents the method of qualifying orbital welding technology using the TIG (142) method of the perforated bottom heat exchanger made of steel A516M (Grade 485) explosively clad with titanium B265 (Grade 1) with titanium pipes B338 (Grade 2) with a diameter of 34.93 mm and thickness 0.7 mm. Based on preliminary tests, welding technologies have been developed that meet the acceptance criteria for acceptance requirements. Qualification of the developed technology and welding parameters that were used during welding was carried out in accordance with PN-EN ISO 15614 Specification and qualification of metal welding technology, welding technology testing, Part 8: Welding of tubes with perforated bottom. This standard specifies the requirements for the qualification of automatic arc welding technology, metal pipe joints with perforated bottom by means of technology testing. As part of the tests, the test joints were subjected to: visual tests, penetration tests, radiographic tests and macroscopic tests.
PL
W artykule przedstawiono sposób kwalifikowania technologii spawania orbitalnego metodą TIG (142) dna sitowego wymiennika ciepła wykonanego ze stali A516M (Grade 485) platerowanej wybuchowo tytanem B265 (Grade 1) z rurami tytanowymi B338 (Grade 2) o średnicy ø 34,93 mm i grubości 0,7 mm. Na podstawie badań wstępnych opracowano technologie, która spełnia kryteria akceptacji przy wymaganiach odbiorowych. Kwalifikowanie opracowanej technologii i parametrów, które zostały zastosowane podczas spawania zostało przeprowadzone zgodnie z normą PN-EN ISO 15614 Specyfikacja i kwalifikowanie technologii spawania metali, badanie technologii spawania, Część 8: Spawanie rur z płytami sitowymi. Norma ta określa wymagania dotyczące kwalifikowania technologii spawania łukowego automatycznego, metalowych złączy rur z płytami sitowymi za pomocą badania technologii. W ramach przeprowadzonych badań złącza próbne poddano: badaniom wizualnym, badaniom penetracyjnym, badaniom radiograficznym oraz badaniom makroskopowym.
Rocznik
Strony
47--53
Opis fizyczny
Bibliogr. 27 poz., il., tab.
Twórcy
autor
  • Silesian University of Technology, Poland
  • Famet S.A., Kędzierzyn Koźle
  • Famet S.A., Kędzierzyn Koźle
  • Famet S.A., Kędzierzyn Koźle
autor
  • Famet S.A., Kędzierzyn Koźle
Bibliografia
  • [1] Vandewynckéle A., Vaamonde E., Fontán M., Herwig P., Mascioletti A., Laser welding head tailored to tube-sheet joint requirements for heat exchangers manufacturing. Physics Procedia, 2013, Vol. 41, 144-52. https://doi.org/10.1016/j.phpro.2013.03.063
  • [2] Henon B.K., Brond A., Mosciaro H., Orbital welding best competition. Welding Design & Fabrication, 2002, Vol. 75, 28-54.
  • [3] Rogalski G., Fydrych D., Łabanowski J., Underwater Wet Repair Welding of API 5L X65M Pipeline Steel. Polish Maritime Research, 2017, Vol. 24(s1), 188-94. https://doi.org/10.1515/pomr-2017-0038
  • [4] Giȩtka T., Ciechacki K., Kik T., Numerical Simulation of Duplex Steel Multipass Welding. Archives of Metallurgy and Materials, 2016, Vol. 61(4), 1975-84. https://doi.org/10.1515/amm-2016-0319
  • [5] Gorka J., Smyczek B., A technology for the welding of tubes to perforated, clad tube plates. Welding International, 1995, Vol. 9(10), 776-80. https://doi.org/10.1080/09507119509548894
  • [6] Lin J., Ma N., Liu X., Lei Y., Modification of residual stress distribution in welded joint of titanium alloy with multi electron beam heating. Journal of Materials Processing Technology, 2020, Vol. 278, 116504. https://doi.org/10.1016/j.jmatprotec.2019.116504
  • [7] Król S., Bański R., Szulc Z., Gałka A., Practical aspects of structural test of titanium-steel bonds made by explosive cladding and exposed to thermal process loads. Advances in Materials Science, 2007, Vol. 7(4(14)), 50-6.
  • [8] Chaze A.M., Coddet C., Influence of alloying elements on the dissolution of oxygen in the metallic phase during the oxidation of titanium alloys. Journal of Materials Science, 1987, Vol. 22(4), 1206-14. https://doi.org/10.1007/BF01233110
  • [9] Onyszkiewicz E., Czynniki technologiczne wpływające na odporność na pękanie stopu tytanu alfa+beta. Solidifikation of Metals and Alloys, 1997, Vol. 33, 187-92.
  • [10] Talkington J., Harwig D., Castner H., Mitchell G., Development of Titanium Weld Color Inspection Tools. Welding Journal, 2000, Vol. 79(3), 35-8.
  • [11] Margolin H., Nielsen J.P., Titanum Metallurgy - Modern materials advances in development and applications. Vol. 2, New York - London: Academic Press. 1960. 225-325
  • [12] Campet R., Roy P.T., Cuenot B., Riber É., Jouhaud J.C., Design optimization of an heat exchanger using Gaussian process. International Journal of Heat and Mass Transfer, 2020, Vol. 150, 119264. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119264
  • [13] Höft S., Grahn S., Bialuch I., Augustin W., Scholl S., Low-Fouling Heat Exchanger for Biofuel Usage in Combined Heat and Power Units. Heat Transfer Engineering, 2020, Vol. 41, 311-23. https://doi.org/10.1080/01457632.2018.1540452
  • [14] Irving B., McCue D., Gas Tungsten Arc Welding: It’s Built to Handle Titanium. Welding Journal, 1992, Vol. 11, 31-7.
  • [15] Lathabai S., Jarvis B.L., Barton K.J., Comparison of keyhole and conventional gas tungsten arc welds in commercially pure titanium. Materials Science and Engineering A, 2001, Vol. 299(1-2), 81-93. https://doi.org/10.1016/S0921-5093(00)01408-8
  • [16] Newkirk J.B., Geisler A.H., Crystallography of the alfa and beta transformation in Ti. Acta Metallurgica, 1953, Vol. 1, 370-4.
  • [17] Ellis M.B.D., Gittos M.F., Tungsten inert gas welding of titanium and its alloys. Welding & Metal Fabrication, 1995, Vol. 1, 9-14.
  • [18] Khorshidi J., Heidari S., Design and Construction of a Spiral Heat Exchanger. Advances in Chemical Engineering and Science, 2016, Vol. 06(02), 201-8. https://doi.org/10.4236/aces.2016.62021
  • [19] Tomków J., Fydrych D., Rogalski G., Łabanowski J., Effect of the welding environment and storage time of electrodes on the diffusible hydrogen content in deposited metal. Revista de Metalurgia, 2019, Vol. 55(1), e140. https://doi.org/10.3989/revmetalm.140
  • [20] Kumar P., Pai A., An overview of welding aspects and challenges during manufacture of Intermediate Heat Exchangers for 500MWe Prototype Fast Breeder Reactor. Procedia Engineering, 2014, Vol. 86, 173-83. https://doi.org/10.1016/j.proeng.2014.11.026
  • [21] Leonov V.P., Mikhailov V.I., Sakharov I.Y., Kuznetsov S. V., Welding of high-strength titanium alloys of large thicknesses for use in marine environments. Inorganic Materials: Applied Research, 2016, Vol. 7(6), 877-83. https://doi.org/10.1134/S2075113316060083
  • [22] Farrahi G.H., Chamani M., Kiyoumarsioskouei A., Mahmoudi A.H., The effect of plugging of tubes on failure of shell and tube heat exchanger. Engineering Failure Analysis, 2019, Vol. 104, 545-59. https://doi.org/10.1016/j.engfailanal.2019.06.034
  • [23] Lothongkum G., Chaumbai P., Bhandhubanyong P., TIG pulse welding of 304L austenitic stainless steel in flat, vertical and overhead positions. Journal of Materials Processing Technology, 1999, Vol. 89–90, 410-4. https://doi.org/10.1016/S0924-0136(99)00046-1
  • [24] Lisiecki A., Effect of heat input during disk laser bead-on-plate welding of thermomechanically rolled steel on penetration characteristics and porosity formation in the weld metal. Archives of Metallurgy and Materials, 2016, Vol. 61(1), 93-101. https://doi.org/10.1515/amm-2016-0019
  • [25] Benway A., Advancements in automatic orbital welding expand its use, provide welders with more option. Industrial Maintenance & Plant Operation, 2000, Vol. 61, 22.
  • [26] Otegui J.L., Booman J.N., Massone J., Experimental assessment of thermal grain boundary embrittlement after tubeplate failure in a petrochemical heat exchanger. Engineering Failure Analysis, 2017, Vol. 79, 140-53. https://doi.org/10.1016/j.engfailanal.2017.04.022
  • [27] Górka J., Przybyła M., Szmul M., Chudzio A., Ładak D., Orbital TIG Welding of Titanium Tubes with Perforated Bottom Made of Titanium-Clad Steel. Advances in Materials Science, 2019, Vol. 19(3), 55-64. https://doi.org/10.2478/adms-2019-0017
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e4f2a81-c3b3-456b-841a-701f89c40c79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.