Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Numerical predictions of heat transfer under laminar conditions in a square duct with ribs are presented in this paper. Ribs are provided on top and bottom walls in a square duct in a staggered manner. The flow rates have been varied between Reynolds number 200 and 600. Various configurations of ribs by varying length, width and depth have been investigated for their effect on heat transfer, friction factor and entropy augmentation generation number. Further artificial neural network integrated with genetic algorithm was used to minimize the entropy augmentation generation number (performance factor) by selecting the optimum rib dimensions in a selected range. Genetic algorithm is compared with microgenetic algorithm to examine the reduction in computational time for outlay of solution accuracy.
Czasopismo
Rocznik
Tom
Strony
169--184
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr., wz.
Twórcy
autor
- Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad, Telangana 500075, India
autor
- Andhra University, Visakhapatnam 530003, Andhra Pradesh, India
autor
- Gayatri Vidya Parishad School of Engineering, Visakhapatnam, Andhra Pradesh, 530048, India
autor
- SRKR College of Engineering, Chinnaamiram, 534204 Bhimavaram, India
Bibliografia
- [1] Thianpong C., Eiamsa-ard P. , Wongcharee K., Eiamsa-ard S.: Compound heat transfer enhancement of a dimpled tube with a twisted tape swirl generator. Int. Commun. Heat Mass Transf. 36(2009), 7, 698–704.
- [2] Kathait P.S., Patil A.K.: Thermohydraulic performance of a heat exchanger tube with discrete corrugations. Appl. Therm. Eng. 66(2014), 1, 162–170.
- [3] Kamali R., Binesh A.: The importance of rib shape effects on the local heat transfer and flow friction characteristics of square ducts with ribbed internal surfaces. Int. Commun. Heat Mass Transf. 35(2008), 8, 1032–1040.
- [4] Jaurker A.R., Saini J.S.:, Gandhi B.K.: Heat transfer and friction characteristics of rectangular solar air heater duct using rib-grooved artificial roughness. Sol. Energy 80(2006), 8, 895–907.
- [5] Thianpong C., Chompookham T., Skullong S., Promvonge P.: Thermal characterization of turbulent flow in a channel with isosceles triangular. Int. Commun. Heat Mass Transf. 36(2009), 7, 712–717.
- [6] Webb R.L., Eckert E.R.G., Goldstein R.J.: Heat transfer and friction in tubes with repeated-rib roughness. Int. J. Heat Mass Tran. 14(1971), 4, 601–617.
- [7] Manca O., Nardini S., Ricci D.: Numerical study of air forced convection in a rectangular channel provided with ribs. In: Proc. 14th Int. Heat Transfer Conf. ASME (IHTC14), Washington D.C., 8-13 Aug. 2010, 861-870.
- [8] Thianpong C., Chompookham T., Skullong S., Promvonge P.: Thermal characterization of turbulent flow in a channel with isosceles triangular. Int. Commun. Heat Mass Transf. 36(2009), 712–717.
- [9] Skullong S. , Chaidilokpattanakul P., Promvonge P.: Effect of inclined ribs on heat transfer behavior in a square channel. In: Proc. 11th Int. Conf. Utility Exhib. on Power and Energy Systems: Issues and Prospects for Asia (ICUE 2011), Pattaya , 28-30 Sep., 2011, 1–5.
- [10] Choi E.Y., Yong D.C., Lee W.S., Jin T.C., Kwak J.S.: Heat Transfer augmentation using a rib-dimple compound cooling technique. Appl. Therm. Eng. 51(2013) 1-2, 435–441.
- [11] Liu J., Xie G., Sunden B., Wang L., Andersson M.: Enhancement of heat transfer in a square channel by roughened surfaces in rib-elements and turbulent flow manipulation. Int. J. Numer. Method. Heat Fluid Flow 27(2017),7, 1571–1595.
- [12] Abed A.M., Sopian K., Mohammed H., Alghoul M., Ruslan M.H., Mat S., Ali Najah Al-Shamani: Enhance heat transfer in the channel with V-shaped wavy lower plate using liquid nano fluids. Case Stud. Therm. Eng. 5(2015), 13–23.
- [13] Piechowski M.: A Ground Coupled Heat Pump System with Energy Storage. PhD thesis, University of Melbourne, Melbourne 1996.
- [14] Bejan A.V.: The concept of irreversibility in heat exchanger design: counterflow heat exchangers for gas-to-gas application. J. Heat. Trans. 99(1977) 3, 374–80.
- [15] Bejan A.: General criterion for rating heat-exchanger performance. Int. J. Heat Mass Transf. 21(1978), 5, 655–8.
- [16] Bejan A.: A study of entropy generation in fundamental convective heat transfer. J. Heat Trans. 101(1979), 4, 718–25.
- [17] Bejan A.: Second-law analysis in heat transfer. Energy 5(1980), 8, 721–732.
- [18] Sekulic D.P.: Entropy generation in a heat exchanger: Heat Transfer Eng. 7(1986), 1-2, 83–88.
- [19] Sekulic D.P: The second law quality of energy transformation in a heat exchanger. J. Heat Trans. 112(1990), 2, 295–300.
- [20] Ogulata R.T., Doba F., Yilmaz T.: Irreversibility analysis of cross flowheat exchangers. Energ. Convers. Manag. 41(2000), 15, 1585–99.
- [21] Laskowski R., Rusowicz A., Grzebielec A.: Estimation of a tube diameter in a ‘church window’ condenser based on entropy generation minimization. Arch. Thermodyn. 36(2015), 3, 49–59.
- [22] Konchada P., Pv V., Bhemuni V.: Statistical analysis of entropy generation in longitudinally finned tube heat exchanger with shell side nanofluid by a single phase approach. Arch. Thermodyn. 37(2016), 2, 3–22.
- [23] Kadiyala P.K., Chattopadhyay H.: Optimal location of three heat sources on the wall of a square cavity using genetic algorithms integrated with artificial neural networks. Int. Commun. Heat Mass Transf. 38(2011), 5, 620–624.
- [24] Kadiyala P.K., Chattopadhyay H.: Neuro-genetic optimization of laminar slot jets impinging on a moving surface. Int. Commun. Heat Mass Transf. 59(2014), 143–147.
- [25] Li W., Khan T., Tang W., Minkowycz W.J.: Numerical study and optimization of corrugation height and angle of attack of vortex generator in the wavy fin-and-tube heat exchanger. J. Heat Trans. 140(2018), 11, 111801-1–111801-11.
- [26] Ge Y., Wang S.C., Liu Z.C., Liu W.: Optimal shape design of a minichannel heat sink applying multi-objective optimization algorithm and three-dimensional numerical method. Appl. Therm. Eng. 148(2019),120–128.
- [27] Kishore P.S., Koteswara Reddy V., Prem Dheeraj M., Pavan Kumar K.: Study and optimization of parameters that influence thermohydraulic performance of flow in a duct with twisted tape insert in conjunction with dimples over its surface. J. Enhanc. Heat Transf. 23(2016), 6, 499–512.
- [28] Saha S.K., Malik S.K.: Heat transfer and pressure drop characteristics of laminar flow in rectangular and square plain ducts and ducts with twisted-tape inserts. J. Heat Trans. 127(2005), 9, 966–977.
- [29] Bejan A., Pfister P.A. Jr: Evaluation of heat transfer augmentation techniques based on their impact on entropy generation. Lett. Heat Mass Trans. 7(1980), 2, 97–106.
- [30] Bejan A.: Entropy Generation through Heat and Fluid Flow, Wiley, New York 1982.
- [31] Hesselgreaves J.E.: Rationalisation of second law analysis of heat exchangers. Int. J. Heat Mass Tran. 43(2000), 22, 4189–4204.
- [32] Zimparov V.: Extended performance evaluation criteria for enhanced heat transfer surfaces: heat transfer through ducts with constant heat flux. Int. J. Heat Mass Tran. 44(2001), 1, 169–180.
- [33] Goldberg D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading1989.
- [34] Whitley D.: A Genetic Algorithm Tutorial. Colorado State University, Techn. Rep. CS-93-103, 1993.
- [35] Madadi R.R., Balaji C.: Optimization of the location of multiple discrete heat sources in a ventilated cavity using artificial neural networks and micro genetic algorithm. Int. J. Heat Mass Transf. 51(2008), 9-10, 2299–2312.
- [36] Nonino C., Comini G.: Convective heat transfer in ribbed square channels. Int. J. Numer. Method. Heat Fluid Flow 12(2002), 5, 610–628.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e4ba194-3b2a-440e-9ba7-8bdce55dd81c