PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Multi-Site Calibration and Validation of SWAT Model for Hydrologic Modeling and Soil Erosion Estimation: A Case Study in El Grou Watershed, Morocco

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water management is one of the critical challenges facing humanity due to increasing demand and limited resources resulting from the rapid growth of population, urban planning, agricultural and industrial sectors. Hydrological modeling is one of the key solutions used by researchers for estimating and monitoring the spatial and temporal variability of water resources in a watershed. This paper aims to evaluate the Soil & Water Assessment Tool (SWAT) performances and simulates the water cycle components of El Grou watershed (3504 km2 ), one of the main basins in the landscape hydrology of Morocco. It points to the need for developmrent of better model input data sets in Africa which are unlimted available when they are crucial for a detailed study of water resources. The model was built under ArcSWAT, and all other processes such as sensitivity analysis, calibration (10 years) and validation (4 years) were done with SWAT-CUP software using the SUFI-2 algorithm. The coefficient of determination (R2), the Nash–Sutcliffe efficiency (NSE) and the square error (RSR) were used to evaluate model performances. The results show that calibration and validation are considered very good, with R2 and NSE >0.81 and RSR <0.5. The hydrological regime of the El Grou watershed points out a predominance of evapotranspiration (75%). Moreover, soil erosion estimation for the period (2000–2015) indicates a low to medium potential of soil erosion with an average of 11.3 t/ha/year.
Twórcy
  • Faculty of Sciences and Technology, Hassan First University of Settat, Settat, Morocco
autor
  • Faculty of Sciences and Technology, Hassan First University of Settat, Settat, Morocco
  • Faculty of Sciences and Technology, Hassan First University of Settat, Settat, Morocco
  • National Institute of Agricultural Research, Morocco
  • Faculty of Sciences and Technology, Hassan First University of Settat, Settat, Morocco
Bibliografia
  • 1. Abbaspour K.C., Johnson C.A. van Genuchten M.Th. 2004. Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zone Journal, 3(4), 1340–1352.
  • 2. Abbaspour, Karim C., Saeid A.V., Raghvan S. 2018. A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. Water, 10(1), 6.
  • 3. Boufala M. et al. 2019. Hydrological Modeling of Water and Soil Resources in the Basin Upstream of the Allal El Fassi Dam (Upper Sebou Watershed, Morocco). Modeling Earth Systems and Environment, 5(4), 1163–1177.
  • 4. Bouslihim, Yassine et al. 2016. Hydrologic Modeling Using SWAT and GIS, Application to Subwatershed Bab-Merzouka (Sebou, Morocco). Journal of Geographic Information System, 8(1), 20–27.
  • 5. Bouslihim Y. 2020. Hydrological and Soil Erosion Modeling Using SWAT Model and Pedotransfert Functions: A Case Study of Settat-Ben Ahmed Watersheds, Morocco. Theses. Université Hassan Ier Settat (Maroc). https://hal.archives-ouvertes.fr/tel03178705 (June 20, 2021).
  • 6. Bouslihim Y., Rochdi A., el Amrani Paaza N., Liuzzo L. 2019. Understanding the Effects of Soil Data Quality on SWAT Model Performance and Hydrological Processes in Tamedroust Watershed (Morocco). Journal of African Earth Sciences, 160, 103616.
  • 7. Brouziyne, Youssef et al. 2017. SWAT Manual Calibration and Parameters Sensitivity Analysis in a Semi-Arid Watershed in North-Western Morocco. Arabian Journal of Geosciences, 10(19), 427.
  • 8. Wenzhi C., Bowden W.B., Davie T., Fenemor A. 2003. Application of SWAT in a Large Mountainous Catchment with High Spatial Variability. In 2003 International SWAT Conference, 37.
  • 9. Cherrad B. 1997. Le Bassin Versant de l’oued Grou (Plateau Central Marocain) : Étude Hydro-Climatologique. These de doctorat. Metz. http://www.theses.fr/1997METZ004L (June 20, 2021).
  • 10. Choukri F. et al. 2019. Analyse du fonctionnement hydro-sédimentaire d’un bassin versant du Rif Occidental du Maroc à l’aide du modèle SWAT: Cas du bassin versant Tleta. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 7(2). https://agrimaroc.org/index.php/Actes_IAVH2/article/view/695 (February 11, 2021).
  • 11. Coron L. et al. 2012. Crash Testing Hydrological Models in Contrasted Climate Conditions: An Experiment on 216 Australian Catchments. Water Resources Research, 48(5). https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011WR011721 (June 14, 2021).
  • 12. Moriasi D.N., et al. 2007. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885–900.
  • 13. Fadil A. et al. 2011. Hydrologic Modeling of the Bouregreg Watershed (Morocco) Using GIS and SWAT Model. Journal of Geographic Information System, 3(4), 279–89.
  • 14. Arnold G.J. et al. 2012. SWAT: Model Use, Calibration, and Validation. Transactions of the ASABE, 55(4), 1491–1508.
  • 15. Hirt C., Filmer M.S., Featherstone W.E. 2010. Comparison and Validation of the Recent Freely Available ASTER-GDEM Ver1, SRTM Ver4.1 and GEODATA DEM-9S Ver3 Digital Elevation Models over Australia. Australian Journal of Earth Sciences, 57(3), 337–347.
  • 16. Jia K. et al. 2014. Land Cover Classification Using Landsat 8 Operational Land Imager Data in Beijing, China. Geocarto International, 29(8), 941–951.
  • 17. Krause P., Boyle D.P., Bäse F. 2005. Comparison of Different Efficiency Criteria for Hydrological Model Assessment. Adv. Geosci., 5, 89–97.
  • 18. Lamia E. et al. 2020. Semi-Distributed Modeling Of A Large Scale Hydrological System Using SWAT Model. In 2020 IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), 1–6.
  • 19. Legates D.R., McCabe G.J. 1999. Evaluating the Use of 'Goodness-of-Fit' Measures in Hydrologic and Hydroclimatic Model Validation. Water Resources Research, 35(1), 233–241.
  • 20. Liu Y., Gupta H., Springer E., Wagener T. 2008. Linking Science with Environmental Decision Making: Experiences from an Integrated Modeling Approach to Supporting Sustainable Water Resources Management. Environmental Modelling & Software, 23(7), 846–58.
  • 21. Markhi A., Laftouhi N., Grusson Y., Soulaimani A. 2019. Assessment of Potential Soil Erosion and Sediment Yield in the Semi-Arid N′fis Basin (High Atlas, Morocco) Using the SWAT Model. Acta Geophysica, 67(1), 263–272.
  • 22. Meyer L.D., Wischmeier W.H. 1969. Mathematical Simulation of the Process of Soil Erosion by Water. Transactions of the ASAE, 12(6), 754–58.
  • 23. Milewski A., Wondwosen M.S., Racha E., Durham M. 2020. Multi-Scale Hydrologic Sensitivity to Climatic and Anthropogenic Changes in Northern Morocco. Geosciences, 10(1), 13.
  • 24. Moussebbih A., Mohamed S., Abdelkader Lz, Mohamed F. 2019. Modeling and Mapping of the Water Erosion Risk Using Gis/Rusle Approach in the Bouregreg River Watershed, 9, 1605–1618.
  • 25. Nachtergaele F. et al. 2010. The Harmonized World Soil Database, 4.
  • 26. Nash J.E., Sutcliffe J.V. 1970. River Flow Forecasting through Conceptual Models Part I – A Discussion of Principles. Journal of Hydrology, 10(3), 282–290.
  • 27. Neitsch S.L., Arnold J.G., Kiniry J.R., Williams J.R. 2011. Soil and Water Assessment Tool Theoretical Documentation Version 2009. Texas Water Resources Institute.
  • 28. Pahl-Wostl C. et al. 2013. Environmental Flows and Water Governance: Managing Sustainable Water Uses. Current Opinion in Environmental Sustainability, 5(3), 341–351.
  • 29. Suranjana S. et al. 2010. The NCEP Climate Forecast System Reanalysis. Bulletin of the American Meteorological Society, 91(8), 1015–1058.
  • 30. Santhi C., Kannan N., Arnold J.G., Di Luzio M. 2008. Spatial Calibration and Temporal Validation of Flow for Regional Scale Hydrologic Modeling 1. JAWRA Journal of the American Water Resources Association, 44(4), 829–846.
  • 31. Schuol J., Abbaspour K.C. 2006. Calibration and Uncertainty Issues of a Hydrological Model (SWAT) Applied to West Africa. In Advances in Geosciences, Copernicus GmbH, 137–143, https://adgeo.copernicus.org/articles/9/137/2006/ (June 14, 2021).
  • 32. Sheffield J. et al. 2014. A Drought Monitoring and Forecasting System for Sub-Sahara African Water Resources and Food Security. Bulletin of the American Meteorological Society, 95(6), 861–882.
  • 33. Stackhouse P. 2006. Prediction of Worldwide Energy Resources. NASA Langley Res. Ctr., Hampton, VA.
  • 34. Woldemariam G.W., Iguala A.D., Tekalign S., Reddy R.U. 2018. Spatial Modeling of Soil Erosion Risk and Its Implication for Conservation Planning: The Case of the Gobele Watershed, East Hararghe Zone, Ethiopia. Land, 7(1), 25.
  • 35. Zhang X., Srinivasan R., Van Liew M. 2008. MultiSite Calibration of the SWAT Model for Hydrologic Modeling. Transactions of the ASABE, 51(6), 2039–2049.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3e4abb1a-85ae-4f62-aa51-6c263316b9a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.